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i. Introduction

HE solution of gyroscopic system equations reguires

solution of an eigenvalue problem which by present
methods is accomplished via a transformation to a standard
non-gyroscopic eigenvalue problem on two symmetric
matrices with its associated computational advantages.
However this is done at the expense of doubling the dimension
and simultaneously doubling the multiplicities of the
eigenfrequencies. In this paper a method is presented which,
for most practical problems eliminates these difficulties. The
method takes advantage of special phase relationships
satisfied in many practical systems.

II. Reducible Gyroscopic Systems
Consider a rotating flexible structure that has a stable
dynamical equilibrium consisting of a uniform rotation. After
discretization of the flexible elements, the Lagrangian for-
malism for the free vibrations about the dynamical
equilibrium takes the following form:

MG+ Gg+Kqg=0 N

where M=MT, G=—-GT, and K=KT7 are real, constant,
n x n matrices; and g (1) (nx 1) describes the displacements of
a body-fixed frame and the elastic displacements.

For a stable system which does not require K>0 the
solution q(1) of Eq. (1) consists only of harmonic
oscillations, and g (¢) becomes

g () = xsinw! + ycoswt (2)

where x, v are (nx1) constant matrices. They contain the
amplitude and relative phase information of the vibrations at
frequency w.

First, we consider the special case where Eq. (1) can be
partitioned as

M, © 0 G K, 0
d+ g+ g=0 (3)
0 M, -GT 0 0 K,

where the index indicates the dimensions of the square sub-
matrices, and G is rectangular (pxgq). Many gyroscopic
systems that arise in practice have this particular structure.

Partitioning g7 [q7gl], x7 [x7xT1, and p7[y].y7]. we
substitute a trial solution of the form of Eq. (2) into iiq. (3).
Grouping terms in sinw? and cosw! one obtains

[—w?!M x, —wGy, + K x,]|sinet
+[—w!M,y, +oGx, + Ky, |coswi=0 4)
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— 2 T i
[—w!Mx, +wGTy,+K x ]sinwt

+—wMy, —wGTx, +K,y, jcoswl =0 (5)

The p equations (4) and the g equations (5) have to be satisfied
for all ¢, This is only possible if the coefficients of sinwt and
coswi vanish, The four corresponding conditions grouped in
two 7 X n matrix equations are

—w?M_+K —wG X
[ p T8y L )
—wGT -w’M, +K, Yq
—szp+Kp wG Yy ]
=0 N
wGT ~w!M,+K, E

and Eq. (7) is easily rewritten as

—w!M,+K, —wG Yo |
=0 (8
-wGT -w?’M_+K, —x, |

Now, the two homogeneous systems, Egs. (6) and (8), are the
same. The frequencies w; are the zeros of

—w!M_ +K —wG
det i i
—wGT —w’Mq-Q-Kq

=0

Let S7[ST.ST.] be the nontrivial solution corresponding to
w;, then the solution g; (#) becomes

i = S, (SiNw 1 4 €08, 1) = (V2/2) S;sin(w;f + 45)
@i =Sy ( —sinw;{ +cosw,r) = (V2/2) S ,cos(w ! + 45)

As the origin of the phasing is arbitrary and the solution 8, is
only defined up to a multiplicative constant, we have. the
complete solution of the partitioned eigenvalue problem by
solving the following symmetric, teal, nxn eigenvalue
problem:

-w’M_ +K —wl S
P P :| |: 3 —0 )
~aGT  —wM +K, || S

q

The first part (5,) of the eigenvector contains the sine terms
and the second part (S,) the cosine terms. The physical
meaning of the partitioned structure, Eq. (3), is to give the
phasing information between the two sets of components gq,,
and g,. The eigenvector S, gives the relative amplitudes of the
vibrations at frequency w,.

The eigenvalue problem, Eq. (9), is still a nonstandard
eigenvalue problem due to the presence of the linear term in w.
These terms can be eliminated by including w in 5, and
premultiplying Eq. (8) by

E, 0
0 mEq
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One obtains KM;! 0
Premultiplying by E )
M, h K, -G hY 0 |
GT M, wS, 0 K, wS, [K 0][5}
P P
—w?
Equation (10} represents a standard generalized eigenvalue 0 M, wS, (14)
problem (A4 - AB)x’ =0 on two nonsymmetric matrices. To
transform Eq. (10) into an eigenvalue problem on two ; .,
symmetric matrices, we first eliminate G7. N KM, K, -K MG S, —0
0 0 ~G™M;'K, K +G™M;'G wS,
Premultiplying Eq. (10) by , we have
GT™™;!' 0
Now the equivalent mass matrix is simpler and the new
> 0 0 S stiffness matrix more complicated,
Tw r s 1 Equations (13) and (14) both require X,>0 for further
G 0 “Sg an diagonalization. If this condition is not met, an expression
like Eq. (14), containing only X in the mass-matrix, can be
+ [ 0 0. :| [ S, } —0 obtained by symmetry.
GTM;'K -G™™'G w$
p p » g M, 0 oS,
Equation (11) can be used in Eq. (10) to eliminate G - w?
0 K » Sq (15)
—w
0 M, uqu (12} \ [ K,—GM_'GT GM;'K, ] [wSp ] o
K -G s KM;IGT KM;'K, s,
p P
—G'M, 'K, K, +GTM;'G wS, Although K>0 is not required, one should have X,>0 or
K, >0
Then changing to the variables {,=M_; 'K S, t,=wS,, gives qEquations (14) and (15) can also be cbtained with an
Eq. (12) a symmetric form: elegant trick used by Meirovitch.® Add to the system of Eq.
(1) the identity
L [ M, K;'M, 0 ] [:,,} Kq¢-Kg=0 (16)
0 M, i to immediately obtain an eigenvalue problem on & symmetric
and antisymmetric matrix (2n x 2#):
M, -G t,
+ T TAf-! =0 M 0 P G K q
-G Kq-l-G Mp e [q k)] + =0 an
0 K q -K 0 q

With Eq. (13), the gyroscopic problem (3) is completely
reduced to a nongyroscopic problem and one of the same
dimension rather than the usual doubling of the dimension.
Gyroscopic systems with the structure of Eq. (3) are in a
reducible form, By stretching the language, they may be called
reducible systems.

Most of the gyroscopic problems encountered in practice
have the structure of Eg. (3) and hence are reducible. Some
examples are: an asymmetric rigid body spinning uniformly
around its stable axis, appended or not with a flexible axial
boom, such a body appended with two radial wires attached
in meridian plane containing the spin axis and a second
principal axis,* Other examples given in Ref. 2 are gravity-
gradient stabilization of a spinning satellite, two spring-
connected gravity-gradient stabilized rigid bodies, and
elastically suspended rotors.

Notice that Eq. (12) can be put in a symmetric form in a
different way.

Equation (17) is then converted into the following
nongyroscopic eigenvalue problem, *

i

G'TM-IG+K G'M-'K
KM-1K

M0

0K (18)

wX

+ 0

II7]

Note that K>0 is a requirement for the simultaneous
diagonalization of the two matrices in Eq. (18). Imposing now
the structure of Eq. (3), Eq. (18) becomes

KM-'G y

M, wx,, K,-GM;!GT 0 0 GM 'K, wx,
M, @y, 0 K,+G™M;'G -G™M;'K 0 WX,
—w? q q " q P p Dp q -0 (19
K, Yo i} -K M>IG K,M;'K, 0 Yy
K, ¥, KM;'GT 0 0 KM7K, Y,
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Table 1

n n(n—=1)/2 P pPq
2 2 1 1
3 3 i 2
4 6 1 3
2 4
5 10 H 4
2 6

and Eq. (19) decouples into Egs. (14) and (15). As explained
before, the two decoupled problems defined by Eq. {19) are
identical when the influence of a phase-shift is considered.

III. Reducibility of a General Gyroscopic System

The principal advantages of solving a gyroscopic system by
means of Eqs. (13), (14), or (15)is to avoid the doubling of the
multiplicity of the frequencies which occurs in Eq. (18). One
also works systematically on matrices of smaller dimensions.
As mentioned previously, most of the gyroscopic systems
encountered in practice have the required partitioned
structure of Eq. (3). The question still remains, however, if it
is possible to transform a general gyroscopic system, Eq. (1),
into a reducible gyroscopic system.

Starting from scratch, we try solutions as given by Eq. (2) in
Eq. (1). The requirement that the coefficients of sinwf and
cosw! should vanish for all ¢ leads to:

—wMx—wGy+Kx=0 20
—w’My+wGx+Ky=0 (13)]

Combining Egqs. {20) and (21) in one matrix equation and
replacing y, = wy,

< [l oW =

Equation (22) is a generalized cigenvalue problem on two
general matrices. By using the inverse of the first of the two
matrices, or by eliminating — G as between Eqgs. (10) and (11),
it is then easily transformed into a problem on two symmetric
matrices:

{MK"M 0 [x,]
—e?
0 M ¥,

M cT X,
+ =0 (23)
G K+G™-'G | |y,

withx=K ~"Mx, or
[K 0 x

—w?
OM| |y,
KM-1K KM-!GT X

+ =0 (24)

GM-'K K+GTM-IG ¥,

Notice also that Eq. (22) becomes a problem on two

antisymmetric matrices by wusing the coordinate vector
[—yIxTl:

< U SIS -

25
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Equations (23) and (24) can be diagonalized simultanecusly
when K>0 [Eq. (3)]. This diagonalized form, after a
rearrangement of the coordinate vector, certainly has the
required partitioned structure which at least proves the
existence of reducible forms for any gyroscopic system
provided K >0, This argument, however, does not contain a
practical rule for converting a general gyroscopic problem
into reducible form as the complete diagonalization of Eq.
(23) or (24) solves at the same time as the original problem. A
general method starting with a Choleski decomposition of the
2n x 2n system formulation and following an n x 7 eigenvalue
problem is given by Derksen’ and Dietrich.® An exhaustive
discussion of available algorithms to tackle the general
gyroscopic problems is given by Dietrich. ¢

Finally, it is easily seen that a previous simultaneous
diagonalization of M and K, combined with a rearrangement
of the coordinate vector, does not necessarily lead to a
reducible system.

Indeed, Eq. (1) becomes

E§,+G,q,+K,q,=0 (26)

with K, diagonal, G,=T7GT=-G], ¢=Tg;, and T is a
nonsingular transformation matrix as given on page 59 of
Ref. 3. Equation (26) is reducible if G,, after rearrangement,
can be partitioned

0 g
G, = [ , } (27)
—£ O

with g rectangular pxgand p+g=n.

As G, stands for a general skew symmetric matrix, it can
contain n(n—1)/2 different elements, whereas the maximal
number p-q for n evenis n? /4 and for 7 odd {n—1)/4. From
n=3 (see Table 1), there is no guarantee to obtain a reducible
system, although in Eq. (26) the elements of E and K, are
systematically zero at the places where the element of G, can
be nonzero. Requiring eigenfrequency independent phase
relations between the components of g, in Eq. (27) is suf-
ficient to give Eq. (24) the reducible structure of Eq. (3).

If Eg. (1) is phrased as an eigenvalue problem for the
Hermitian impedance matrix:

Z=—wM+juG+K Z, =0

The procedure just described leads to an impedance matrix
which contains only real or purely imaginary numbers. It has
been shown that such impedance matrices are not necessarily
in a reducible form.
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