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Solution of Linear Gyroscopic Systems | - a2 M oxo + aGryo + I(qxq lsinol

+ I-a2Mo!o-aGrxo+Kqyqlcosttt=0 (5)

Thep equations (4) and the 4 equations (5) have to bc satisfied
for all ,. This is only possible if the coeffici€nts of sino/ and
cosot vaDish. The lour corresponding conditions grouped in
two rxrmairix equations are

| -,, '2M-+K- - "tG I I x_ 1
|  

'  
l l  

"  
l = o  ( 6 )

|  - "G ,  _@,Mq+Kq  I  I  yo  )

f  -u ,Me+Ke , , rc  ) l  y"  I
I  l l  l = 0  n \
L .G,  -ot2Mo+Ko. l  I  , "  . l

and Eq. (?) is easily rewritten as

|  - u ,Mo+K,  -aG  |  |  y .  1
I  l l  l = 0  ( E )
|  - . a ,  - , n , M q + K q  )  L  - x q  )

Now, the two homogeneous systems, Eqs. (6) and (8), are the
same. The frequencies d, are the zeros of

. |  
-a2Mr+ Ko - L,tC I

d e t  I  l = u
L  - rG t  - , , : 'Mo+Ko  )

Let S,?'{SrStl be the nontrivial solution corresponding to
oi,  then the solut ion 4, (/)  becomes

4r, = Sr; (sinr,r,t + cos tt)t) = (lt /2) Seisin(ait + 45)

qai = sa, ( - sino,l + c osu, t, = lA / 2 r S 4icos (dit + lJ)

As the origin of the phasing is arbitrary and the solulion S, is
only defined up to a multiplicative constant, we have- the
complete solution of the partitioned eigenvalue problem by
solving the following symmetric, real, ''x,' eigenvalue
problem:

f  - , , t , M , + K "  - a G  l t S ,  I
I  l l  l = o  ( e )
L - .o ,  -6 ,Mq+Kq I  L  s ,  .J

The first part (Se ) of the eigenvector contains the sine te.ms
and the second part (S{) the cosine terms. The physical
meaning of the partitioned structure, Eq. (3), is to 8ive th€
phasing information between the two sets of components 4,
and qa, The eigcnvector S, gives the relative amplitudes of th;
vibrations at frequency o,.

The eiSenvalue problem, Eq. (9), is still a nonstandard
eigenvalue problem due to the presence of the linear ierm in o.
These terms can be eliminated by including c.r in ,5o and
premultiplying Eq. (8) by
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l. lntroduction
rTIHE solut ion of gyroscopic system equations requires
I solut ion of an eigenvalue problem which by present

methods is accomplished via a transformation to a standard
non-gyroscopic eigenvalue problem on two symmelric
matrices *ith its associated computational advantages.
However this is done at the exp€nse of doubling the dimension
and simultaneously doubling the multiplicities of the
eigenfrequencies. In this paper a method is presented which,
for most practical prgblems eliminates these difficulries. The
method takes advantage of special phase relationships
satisfied in many practical systems.

ll. Reducible Gyroscopic Syslems

Consider a rotating flexible structute that has a stable
dynamical equilibrium consisting of a uniform .otation. After
discretizalion of the flexible elements, the LaSranSian for-
malism for the free vibrations about the dynamical
equilibrium takes the following form:

Md+G4+Kq=o ( l )

where M=Mr, C= -Gr, and K=Kr arc real, constant,
n x z matrices; and q ( t) ('l x l) describes the displacements of
a body-iixed frame and the elastic displacements.

For a stable system which does not require K>0 the
sotution q(t) of Eq. (l) consists only of harmonic
oscil lations, and 4(l) becomes

4 (1) =xsinol+/cosot (2,

where x, y are (n x l) constant matrices. They contain the
amplitude and relative phase information of the vibrations at
frequency o.

First, we consider the special case where Eq. (l) can be
partitioned as

l M -  o  I  t  0  c l  f  , ( "  0 l
I  l , t *  I  l , i + l -  l q = o  ( 3 )
|  0  M " )  L - G ' 0 . 1  1 0  , { a . J

where the index indicates the dimensions of the square sub-
matrices, and O is rectanSular (pxq). Many Syroscopic
systems that arise in practice have this particular structure.

Patt i t ionina q r I  q Iq 11, x r lx lx! l .  and y I  ly[.y[ ] ,  we
subsritute a tr ial  solurion of lhe form of Eq. (2) inlo Eq. (3).
Crouping terms in sin(,t and cosdt one obtains

| - o2 M pxp- uGyq + K ex plsin(l�t

+ l- ,r2Mete+aoxq+ K;le)cos!! l=o (4)
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. l M ,  o  l I s ,  I  f 1 < ,  - c l I s ,  l- ' '  
I  o ,  " " j  L , r "  l .  L  o ^"  I  L , , "1="

( l0)

Equation (10) represents a standard generalized eigenvalue
problef l  ( ,4-M)x'=0 on two nonsymmetric matrices. To
transform Eq. (10) into an eigenvalue problem on two
symmetric matrices, we first eliminate Cr.

f  o  0 l
Premult iplying Eq. (10) by |  ,  we nave

I  G r M ; ]  o )

[  0  0 l t  s -  I- . '  I  I  I
L c '  0 I I o S , J

I  o  0 .  l f  s "  I
+ l  l l  

-  
l = o

I  GrM; tKe -A1 M; tC l l  ,S"  . l

Equation (l l) can be used in Eq. (10) to eliminarc c r:

, I Mo 0 I I s, ]- o r -  I  I  I
l 0  M a  l L u s e l  ( 1 2 )

t Kp -o I
T l  l

|  -G rM;1K ,  Kq+GrM; IO  l

Then chanSing Io lhe vatiables t e= M; I K ese, ra = orsa, gives
Eq. (12) a symmetric form:

" I MpK;tMe

L 0

I  M e  - c  l f  r ,  I
+ l  l l  l = 0

L  - O r  K e + C t M ; , A  )  l r "  )

I K"M;t o l
Premulliplying by I 

- '  
l ,

L  O  E " )

Now the equivalent mass matrix is simpler and the ncw
stiffness matrix more complicated,

Equations (13) and (14) both require 1(, >0 for furthcr
diagonalization. I f  this condil ion is not mit,  an expression
l ike Eq. (14), containing only,(o in the mass-matrix, can bc
obrained by symmetry.

Althougb ,(>0 is not required, one should have ,f(" >0 or
K ">0 .

Equations (14) and (15) can also be obtained with an
elegant t.ick used by Meirovitch. s Add to the system of Eq.
( l)  the identi ty

( l  l )

(  r4)

, f x , 0 l f s e l- . r '  I  l l  I
L  0  Mo l  L  ! , sq  l

.  I  KeM; IKe -KpMelG 
I  I  s ,  l+  |  |  |  |  = u

|  - c r M ; t K e  K q + o r M e  / c  . j  L , r s "  I

(15)

.  I M ,  o  I [ , s ,  I- i , ' l i l l

L  0  J ( ,  l L  s q  l

, l  K e - c M ; t c t  c M ; t K q  l l " S ,  I  ^-  
I  KqM;tcr  KqM;tKq I  I  r "  l= '

l d l  I  c  K l l q

L a I 
'L -* o I L o

i s ,  I
I  )  =o
L r s o l

(13)

With Eq. (t3), the gyroscopic problem (3) is completely
reduced to a nongyroscopic problem and one of the same
dimension rather than the usual doubling of the dimension.
Gyroscopic systems with the structure of Eq. (3) are in a
reducible form, By stretching the language, they may be called
reducible systems.

Most of the gyroscopic problems encountered in practice
have the structure of Eq. (3) and hence are reducible. Somc
examples are: an asymmetric rigid body spinning uniformly
a.ound its stable axis, appended or not with a flexible axial
boom, such a body appended with two radial wires attached
in meridian plane containing the spin axis and a second
principal axis.. Other examples given in Ref. 2 are gravity-
gradient stabilization of a spinning satellite, two spring-
connected gravity-gradient stabilized rigid bodies, and
elastically suspended rotors.

Notice that Eq. (12) can be put in a symmctric form in a
different way.

Kq-Kq=0 ( l6)

to immediately obtain an eigenvalue problem on a symmetric
and antisymmetric ma|trix (2n x2n) |

I '  o  l
L 0  , ( l

Equatio[ (17) is then converted into
noogyroscopic eigenvalue problem. t

the followinS

Note that r(>0 is a requirement for lhe simultaneous
diagonalization of the two matrices in Eq. ( l8), lmposing now
tbe structure of Eq. ( l) ,  Eq. (18) becomes

'  l l r l
M " J L t " )

(17)

(  l 8 )
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and Eq. (19) decouples into Eqs. (14) and (15). As explained
before, the two decoupled problems defined by Eq. (19) are
identical when the influence of a phase-shift is considered,

IlI. Reducibility of a General Gyroscopic Syslem
Thc principal advantages of solving a gyroscopic system by

means of Eqs. (13), (14), or (15) is to avoid the doubling of the
multiplicity oi the frequencies which occurs in Eq. (18). One
also works systematically on matrices of smaller dime.$ions,
As mentioned previously, most of the gyroscopic systems
encountered in practice have the required partitioned
structure of Eq. (3). The question still remains, however, if it
is possible ro transform a general gyroscopic system, Eq. (l),
into a reducible gyroscopic systcm.

Starting from scratch, we try solutions as given by Eq. (2) in
Eq, (l). The requirement .that the coefficients of sinol and
cosrat should vanish for all ,leads lo:

-a2Mx-oGy+Kx=0 (20)

-'2MY+(I�Gr+KY=0 (21\

Combining Eqs. (20) and (21) in one matrix equation and
teglacitrgYt=u!,

Equation (22) is a generalized eigenvalue problem on two
general matrices. By using the inversc of the first of the two
matrices, or by eliminating - C as belween Eqs. (10) and (l l),
it is then easily transformed into a problem on two symmetric
matrices:

\Nirhx=K tMxtor

Notice also that Eq. (22) becomes a problem on two
antisymmetric matrices by using lhe coordinate vector
l - v r . x r l :

vo l .  5 ,  NO.  l

Equations (23) and (24) can be diagonalized simultaneously
when r(>0 tEq. (3)1. This diagonalized form, after a
rearrangement of the coordinate vector, certainly has the
required partitioned structure which at least proves the
existence of reducible forms for any Syroscopic system
provided K>0. This argument, however, does not contain a
practical .ule for converting a general gyroscopic problem
into reducible form as the complete diagonalization of Eq.
(23) or (24) solves at the same time as the original problem. A
general method starting with a Choleski decomposition of the
2n x 2, system formulation and following an n x n eigenvalue
problem is given by Derksen? and Dietrich.6 An exhaustive
discussion of available algorithms to tackle the general
gyroscopic problems is given by Dietrich.6

Finally, it is easily seen that a previous simultaneous
diagonalization of M and r(, combined with a rearrangement
of the coordinate vector, does not necessarily lead to a
reducible system.

lndeed, Eq. ( l)  becomes

E i i t +Grq t+Kdq t=0  (261

with ,(d diagonal, Gt=T|CT= -CT, q=Tqt, a^d T is a
nonsingular transformation matrix as given on paSe 59 of
Ref. 3. Equation (26) is reducible if 6r, after rearrangcment,
can be partitioned

I  o  s l
c ,=  l  ,  , rT

L  -c '  o  l

with 8 rectangularP x q alrd P + q = n.
As G/ stands for a general skew symmetric matrix, it can

contain r(r- l)/2 different elements, whereas the maximal
number p. q for|l even is t ' l4 and for 4 odd (tt - l)/4. From
'| > 3 (see Table l), there is no guarantee to obtain a reducible
system, afthough in Eq. (26) the elements of E and Kd are
systematically zero at the places where the element of Cr can
be nonzero. Requiring eigenfrequency independent phase
relations between the components of 4r in Eq. (27) is suf-
ficient to give Eq. (24) thc reducible structure of Eq. (3).

If Eq. (l) is phrased as an eiSenvalue problem for the
Hermitian impedance matrix:

z=  -o ,M+ jac+K Z"=O

The procedure just described leads to an impedance matrix
which contains only real or purely imaginary numbers. It has
been shown that such impedance matrices are not necessarily
in a reducible form.
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