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Abstract, We analysc the transv€rs€ vibralions of a lether, modcllcd as an inextensible cable, and
revolving .t an avemge rate equal to the orbit l rale. The reference motion is a revolving rigid
tether. During this molion lhe force in lhe t€lher (time and location depcndent) remains, in a fi.it
apptuximation, aligned with the letheraxis. Separation ofvariables for the vibiations about this motion
givcs a lJgcndre cqualion for the spalial depcndency of the deformations and Hill's equations for
time dependencyof thc in- and out-of-plane deformalions. 

'Ihe 
boundary conditions on the l-egendre

equation gen€rale a series of admissible values of the separation constant that bccome equidistant.
The two Hill's equations generate a series of inlervals, contmcting to equidistant critical valucs,
whcrc thc solulions arc unbounded. Thc adnrissible values of the separdlion constant must avoid
these inlervals. Asymptotic expressions for the separalion constant and the critical values are given.
Thl) finit and second in-plane deformation mGle are unstable for zero end masscs. By incrcasing the
ratio of the concentmted over lho dislribulcd mass the dcformation modes can be stabilised and lhe
values of the separation constant can be made a multiple of th€ distribution of the critical points.
Introducing uncqual tip masses does not affect this rcsult.

Key words: Rcvolving lclhcr, cablc dynamics, lrgcndrc equation, I Iill's equation, linear vibrations.

1. Notations and Abbrrviations

1.1. TE.TIIER DATA

?fi

p
o
s

I
rt t t ,2

nl

.5n

tothcr lcngtll
concentrated lip masses of the tcthcr
system mass (= rnr + ntz + ol)
ratios of end masscs and distributed mass to total mass
radius of gyration of the tcther (i = m p2)
lincar dcnsity of the lether
intrinsic length of thc tethe r; origin at COM,
takes the valucs -st and 62 at the end points,
s r  =  / ( n r z  * o L l 2 ) l n t . , , s z =  l ( m t 1  0 1 1 2 ) l u t
reterence length to obtain shndard l,egendre equation,
l?.r = sr.rz(2mr l2nz2 a 6111o1
normalized intrinsic length s//,"1
valucs takcn by si at the end points of the tcther, i = 1,2
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1.2. EtlIPnc IIUNCTIoNS

A modulus of elliptic functions
q nome of elliptic functions
Ii(A) complete elliptic integral of the first kind
E(k) complete elliptic intcgral of the second kind

1.3. VARIABLES

rr  iner l ia l  rare o[ ro lat ion of  R,n1i t ; .1
n- constanl rate of rotalion of the COM of the tether
nK rate of rotation of a circular orbit at distancc fi, n2^ = pf R3
A"(.t) dimensionless funclion that multiplies the tension function [/(s)] for

the revolving tether. Reduces to 3 for a gravily gradient slabilised
t t / ; \

tether.,4,(t) = lrft +tl+e'�+ f ..r" ir l l '  { 3 cos2 a(t) - 1
in-plane angle from local vertical to tether axis
radius of gyration over distance to COM, pl R,^,
gravitational constant times mass of the attracting body
paramcter in Legendre equation

VEgroRS

dynamic inner tbrce associated with the dynamic displacement
(fint order quantity)
dynamic displaccmcnt from a refcrence motion
(fint order quantity), r = lr,y, z]r
inner lorce in the tether (tension) at s
applie<l force pcr length, in this application: -o pfR2 l,
radius vector to thc matcrial point s of the tether
radius vector of circular rcfcrence orbit
unit vcctor of Ri
curvature of the tether in th€ reference motion

(t

a
p
u

r

F
F"
R
R-"
I i

Vectors are bold facc, thcir modulus is plain text.

1.5. ABBREVI,{.noNS

COM Ccntre of mass
GGS gravity gradient sabilised
RHS right hand side
ODE ordinarydifl 'crcntialequation
PDE partial ditlerential equatron

v tilde matrix corresponding to vector v (reprcscnts
the cross product)
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veclorial producl or cross product
derivative w.rt. the spatial variable s or s'"

derivativc w.r.t. time t or rl = nr-t
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2. Introduction

Breakwell (1987) and Gearhart (1990) studied the problem ofexpanding a circular
orbit by having a tether revolving in the orbital plane with an average rate equal
to th€ orbital rate. Modelling th€ tether as two equal point masses connected by
a masslcss bar, the result is that such an orbit expansion is possible when J2 is

included in the gravity potential. The tether length must be varied in an appropriate

way. This note studies the slability of the revolving tcthcr when it is modelled as
an inexlcnsible cable with zero bending stiifness.

The approach used for this vibrational problem ofa onc-dimensional continuum
is described in Kulla (1982), Janssens and Crellin (1985). Spatial discretization of
the tether is not needed. [,oc Vu-Quo (1986) and Simo (1986, 1988) use a similar
approach for applications to nonlin€ar problems. The motion of the rigid revolving
tethcr as obtained by Brcakwell and Gcarhart (1987) is the reference motion for
the vibrational problem. The tether motion is dcscribcd by elliptic functions and
thc rotation rate varies bctween 0.44 and 1.788 times the orbital rat€. Deviations
of the COM of a circular rclcrcnce orbit are neglected, Janssens (1990).

Separation o[ variables on the induccd linear vibration problem leads to lrgen-
dre equations lbr the mode shapes and two Hill's equations for the time dependency
of the in-plane and the out-of-plane deformations. Thc boundary conditions gen-

erate admissible values of lhe scparation constant in lhe kgendre equalion. These
values must give bounded solutions [or the two Hill 's equations. This is investigated
numcrically and scmi-analytically from asymptotic expressions for the separation
constant and the critical values of thc Hill 's equations. The first two in-plane defor-
mantion modes are unstable when the end masses are zcro. They can be stabilised
by adding large enough end masscs.

3. Problem Formulation

As starting point wc havc onc Kirchoff equation (balance equation) and an cquation
expressing thc fact that in the inextcnsible cable model the inner lorce is tangent
to the telhcr:

* , #= r "dF- r k

dR
d..9

F

]E

(1)

(2)



320 J.V BREAKWELL AND F]L. JANSSENS

Equations 1 and 2 arc a spccial case of a set of tbur €quations describing a one-
dimensional elastic continuum (Janssens, 1985; Simo, f988). They will be lin-
earized about thc rcl'crence motion (R.-, n7;) for the COM and o(t) about the
COM:

rPn = pltt!^

,a-

o(/ )  = -Yj : l : r '  . / , (do(O; /  lk2)
K

-r?l l- - l
l r ( t i  l ^ ' =  V J  _ - :

. l r + I . z
v - ' 4 -

Fore =0: k2 =o.93a446, A -  0.9(18734

. ,  o  1 )  ,  . . . , .I I ' . (s" . r )  =  " -  n l r t l " , ,1 , t ix1-  s i , ) .  (6)

By applying thc proccdure

R = R . * r ,  F = F . + f  ( w i t h  R . ( s )  =  R " -  +  s 1 " )

and rctaining only first order terms in r, f independcnt of their magnitude compared
to thc cquilibrium terms, which may be zero, thc equilibrium terms cancel out and
we obtain in a first stcp:

df - ,ltz /F.

d . s + N e \  
f  = o -  - 7 *  ( n " ) r  ( 7 )

dr  f  F" f  F.- + ^ . . r - - , .  
, r  r .  ( 8 )

o s  r ,  r :  f e

The terms K€ x r account for a possible dependcncy of the orientation of the
equil ibrium frame on s (equivalent to Vo6" = V."1 { Oxr with s as independent
variable instead of l). The right-hand side of Equation 8 is rewritten as

I  - ^
+ r i" f

by using vector idcntities. Substituting thesc results in Equations 7J wc have the
following linear first order system of differential cquations in s:

(3)

(4)

(s)
do(o )2 '
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F'ig. L Axis system.

The terms occurring in 9 will be represented in an axis coinciding with the
rigid tether (Figure l). The unit vector 1;. is along thc e-axis, hcncc i2r. =

diag {0, -1, -l}, and x" is z.ero. The sccond order time derivative d? frlt2 in a
frame rotating at n6 f o is:

) z l

(e)

clrz
--i:-

d.t.
=  i+  (n r r  *  r i ) l , x r *2 (nx  +  o )1 ,x i *  (n r  +  c r ) ' l " x ( l , x r )  .  ( 10 )

As the z-axis is pcrpendicular to the orbit plane the component equations core-
sponding to Equation 9 arc casily obtained with r(s, l) - [z y z]7 the displacement
of a material fnint of the tether from its location [s 0 0] on a rigid tcthcr For the
term dF"/</R, thc lincarizcd gravity at ll"- is also expressed in this frame by a
rotation a. Denoting thc components of the dynamic force: f(.s, l) - lJ" fo J,lr
we have for 9:

r ' = 0

" , t -  2
a' = 

;;46 a4,,111-� ",s fo

- t -  2  r"  -  
i i { (a4r1q1- "7t '

r ' l|  . -  i 2  1
f  " l '  |  

- " '  - A ' l " l f " l

L r l  
= l  

r , / o 2  d F , r  l L t l- K -  It I dtz r/R. I J



322 J.v BREAKwETT AND F.L JANSsENS

f '  = " l i  -  2(n.y ! . i ' )s -  ("x + a)zx -  i ty l  +

- o nznl(2cos2 o - sin2 cr)r - 3 sin o cos oy]

f i ,  = "1E -2Qty !  d) i  -  (26 + a)2y -  i t r )  +

o nf, [(2 sin2 a - cos2 a)y - 3 sin n cos a z]

f l  - " l ;1 nj;zl .

This set ofequations decouples into an in-plane and an oufof-plane set. Combining
terms wc havc:

r ' = 0

(13)

(14)

f!

o n2K l?{ A"(t)(1. - s2.)

= o [i - n2,, A,1t1xl - 2o lily + (nn + a)y]

= oly - n2x {A"(r) - 3 cos 2o} yl+2o(nK + a)i)

2
o n2t i  t2* t  A^ l t \ ( l  -  s i )  J '

f: = ol2 t n2x zl

(11)

(r2)

(15)

(16)

4. Separation ofthe Out-of-Plane lJquations

The outof-plane deflections z(s, l) are describcd by the system 15, 16. Trying a
solution of the typc:

z(s, t )  = Z(s)ToQ)

f.(s, t )  = o"(s)n2K A"(t)To(t)

we obtain

O , ( s )  = :  l ! !  0 -  " 1 l Z '
z '

{(t - ,t") Z'}' = -zc Zll?,t

rn + "1rro = -cn1; AnTo

where -c is a separation constant. Changing the independent variable in 20 to s,.
(derivations w.r.t. srl are still denoted by ') it becomes a lrgendre ODE in standard

(r7)

(18)

(1e)

(20)

(2r)
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The differential equation for ?6 is a Hill's equalion with ?ri. [1 + c ,4, (t )] as periodic
function. Changing to the angular independent variable d = nirl it becomes (again
with the same notation for derivatives w.r.t. rl):

7 + P o ( d ) " 0 = 0

where

P o ( 0 ; c ) = 1 , + c A ^

(23)

(24)

The boundary con ditions for 22 are Z"(-",-t) = Z"(s.2) = 0whenend masses
are present. When the end masses go to zero the sni go to +1 and these conditions
become Z(*1) = finite. These boundary conditions generate an infinite series of
admissible values c;. The solutions to 23 must be bounded for all these values.
When both solutions are bounded none of them is, in general, periodic. Some facts
on the Hill equation are collected in Appendix A. Hill's equation generates a series
of intcrvals Ic4 - c'o] tor the separation constant where al least one of the solutions
is unbounded. This series can be studied independcntly of the Legendre equation.
These intervals go to zero with increasing c. The boundaries of thesc intervals
are referred to as critical values. When the interval is so small that in practice the
boundaries can be considered to be as coincident, the instability or divergence of
the solutions is very slow. Everything happens as if there are two periodic solutions
for that particular value of c. Hence the practical problem is to avoid thcsc intcrvals
until lhcir width can be neglected. The determination of this limit dcpcnds on the
application.

5. Separation ofthe In-Plane Equstions

From 11 we see immediately that o(r, s) can only depend on the time r = r(t).
Again assuming solutions:

form with 2c = u(u + l):

0 ,  -  s2^ )  2 "  -2s .z t  l zc  z  =o .

y ( s , t )  =  Y ( s ) T ; ( t )

Iu f t , t )=  o r ( .s )  nL  A" ( t ) r i ( t )

for Equations 12, 14 we have:

i i ,  { ( r  s i ) Y ' ) '  = 2 l o e v ,  -

(22)

(2s)

(26)

= 2lin - n2^ 1,t^1t1- 3 cos 2n) t l  -: ^ * o(";:"! . e7)
n i i  An  t t  n i i  An  t 1
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Neglecting for the moment the lerm irr i, a separation of variables is possible. With
a scparation conslant -cl and similar modifications as in the out-of-plane case:

( r  -  s l ) t " ' -2s, , t ' '  +2c 'Y =o

r ;+ pJt ) l ' t=o

P , ( L ) ; , 1  1 =  1 2 L  y  L l  1 c ' A , ,
, ?r Ii

(28)

(2e)

(30)

We again have a Legendre ODE with the samc boundary conditions as in the
out-of-planc casc. This gcncrates the same series of admissible values for the
separalion constant c| = c,. This same series must givc bounded solutions for
the Hill 's Equation 29. As the peridic function P; dil 'fon from Ps the sequence
of critical intervals bclonging to 27 will be diffcrent. Howcver, lhe dependency
of these functions on thc scparation constant c via ,4" is the same. As shown in
Appendix A, this implics that the critical values are asymptotically the same.

The in-plane equation contains a RHS proportional to i. The assumption i = 0
lcads to an inhomogeneous Legendre equation. Assuming

AU';
'  "  

4 \ t t " t i r )

givcs a conslant RHS (= (,') for 27. This assumption may not lead to contradictions
for /" in 13. This point was noi investigated turtber as it was assumcd that r and

,f arc only prcscnt in thc rigid mode as for a rotating cablc. The RHS does not play
a role then in the calculation of the admissible values for the seDaration constant.

6. Legendre llquation - Mode Shapes

The Legendre Equations 22, 28 are in standard notation:

( l  -  , ' ) y "  -2x  g '  *  u (u  1  l ) y  =  o  . (31)

The admissible values of th€ parameter v tn 3l are such that the the boundary
conditions A"(-s"t) = y"(s"z) - 0 are satisfied. The mass propertics of a given
tcthcr dcfine thc points -snt and .sn2 whcrc thc Lcgcndrc functions must be
evaluated. Table I givcs a summary of the cases covercd.

For a masslcss tcther the ref'ercnce length becomes infinile. For both cnds lhe
Legendre functions should be evaluated at the same value zero. This is the limiting
case where the tension is constant in the tcthcr. The valuc ofthis constant is not given
by Equation 6 as the product 1,"1 s - 0 . m is undefined. In the remaining cases the
tether mass is laken into account. The tension in the tcthcr is no longer constant. In
first approximation it is maximum at the COM and decreases symmetrically around
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TABLE I
Mass properties.
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1fl i rd  -s t / i  s r l i

2 n . ! I

nrr -f mr --4L -,j4L

o l  O  0

Ztn. + dl --r!:- --t!:-

rnz * ot o #"
lrl | + rl ---ill 0

m \ ! 2

rne fite o

m L m z O

0 0

O rn2 o

m : O  o

0 0

0

1 t

, a L

inf.

inf.

0 1 1

O rz trl

1 1 1

d l  1
2 t + . 1  '

ffi 2n, + "o no

;;+a " '1

I
,
| /l--:--i;;
. I -  Va 

-r  
.

Jsts, X

2rt + rd

2trz I  ra 2rt I  ra

x : \/Z;;+Zrn2 + ar

it. For the revolving tcther the tension in each point varies by the same factor at
twice the orbital ratc- Ittcluding higher order terms in the graviry expansion or the
exact gravity force makes this variation asymmetric along the tether length. Such
a model cannot result in a L-cgendre equation. Whcn there are no end masses the
tension becomes zero at the end points. When end masses are present the tension
at the end points is in equilibrium with the force on the discr€te masses.

The general solution y is a superposition of the two fundamental solutions: e,,
€1. These solutions are calculated from the recurrence rclation on the coefficients
of their expansion at zero. The second dcrivatives are calculated in the same way.
t-et

y ( r )  =  a e o ( n ;  u )  + b e 1 ( r ;  u ) .  ( 3 2 )

Then we need the values of / that make the followins determinant zcro:

e ' l ( - " " t ;  u )  e ' l (  s ^ 1 ;  v )
= 0 . (33)

e'1tft"2; u) e'l(s,,2; u)

No simplifications were found by rcplacing the second derivatives using Equation
31 or replacing the derivatives by a combination of solutions using a different
z. When the end masses are equal snt = sn2.As e6 is an even function and er
an odd function, the same is true for their second dcrivative. Hence, dd@ ; v) =
e((-r ; u), e'l(x; u) = -etl(x ; u). Condition 33 reduces to etdG^z; u) = O and
e'!(s,,2; u) = 0 separately. The set of zeros of the determinant equation contains
always 0 and l. The remaining zeros are easily dclermincd using their constant
asymptotic separation (Janssens, 1985)
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.I'AI]LE II
Admissible ,, values for a tcther with equal end masses.

2trr  sn

0 1 2
.2 0.845 2.105
.4 0 .'t 45 2.254
.6 0.674 2.425
.8 0.620 2.583
1 0.5573 2.735
2 0.4472 3.41.6
4 03333 4.51'7
6 0.2713 5.414
8 0.2425 6.200
10 0.2182 6.899

3 4
3.363 4.737
3.815 5.518
4.239 6.215
4.819 6.847
5 7A29
6.564 9.859
8.952 13.57
10.85 16.38
12.41 18.83
13.91  21 .01

5 6
6.119 '7.61

7.291 9.098
4.25't 10.32
9.123 lt.42
9.916 1.2.43
13.20 16.56
1a.09 22.70
2r.94 21.52
25.22 31..62
28.13 35.26

1
1.5601
1,.A676
2.1230
23441

14.95 17.44 2.5s2
19.93 23.30 3.388
2't.30 31,.92 4.622
33.09 38.67 5.589
3A.02 44.43 6.412
42.39 49 .52 7 .140

L u -
larccos( -s"1 ) - arccos(sn2)l

For equal end masses th€ asymptotic s€paration bccomcs:

Atu, (s" ) -
l r  a rccos(  sn  )  |
t r  h  I
I  T I L

(34)

When thc tip mass is zero thc lbrmula gives the exact rcsult Az" (0) = landrur = A.
This rcsult was given by Breakwell and Andccn (1977a, b). When the equal end
masses increasc thc spacing betwccn the /k increases. Thc flexible frequencics
move up and are at the limit pushed to inlinity. The fint flexible frequency (t2)
bccomes comparablc to the asymptotic separation. ln practice good estimatcs for

u L atc'.

zr . (s , )  -  (A -  1)  Atu"(s")

lor a wide range of the paramctcrs. The smaller the variation of the tension is

comparcd to the 'average' tcnsion, the better lhis approximation is.
Equation 34 shows that A,/ attainablc with uncqual end masscs are the same

as the attainablc with equal masscs. In the sequel il will be intcrcsting to have an
cxpression for the end masses that realize the same A/. By using the dennitions
of .snl, sn2, ,sl, s2 and lrer we have for the ratio of each end mass to thc distributed
mass:

(3s)

(36)
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Fig. 2. Ratios of end mass over distributed mass needed to obtain an asymptotic separation of
Av - 4.4O3.

^  _ m t  _  I  I  t  -  |
t t  -  - t  -  ; ; -'  o l  2 ( s , 1  - t  o , , 2 )  L s , 1  

- " ' l

m )  I  r 1r _  _  1  . l
o t  z ( s , . t  +  s , 2 J  t . ! n 2

(37)

(38)

Fixing Aru makes rr and 12 lunctions of one parameter, e. E. 0z = arccos snz 1 zr 12.
As an example the unequal end masses rl, 12 nceded to obtain L,u = 4.40386
are given in Figure 2. Thc corresponding z; are given in Table III..When mass
ml * oo, s,r - 0 as the COM coincidcs with m\. The mass m2 goes to
arccos(T f2 + r lLu) = 0.654 times the distributed mass to make Az the desired
value.

7. IIi l l 's Equation - Time Dependency

With rl as independent variable Equations 23 and29 are of the type:

y t t + P ( t ) : c ) y = o  ( 3 9 )

and P refers to any of thc cvcn periodic functions 24, 30 with period r. The
transition matrix - corresponding to 39 in a first order lormulation - after a period
zr is:

o ( n )  =
Ut(n)  yz l l t  )

' y r ( r ) ' y z ( r ) '
(40)

where O(0) = ?l defincs the initial conditions o[ the two indcpendent fundamental
solutions l/1, y2.
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TABLE III
Admissible ,? valucs for a lether with un€qual end niasses.

r :  sn l  sn2

1..a9nj12 1.71.cr'3 0.3359 0.36235'1 4.3r'756
8.52588

12.8586
1.7.2261

2.28061 1.4633 0.2Aa42 0.408487 4.31918
8.5268

12.4592
11.226

3.65305 1.U)745 0.191388 0.49757 4.32885
4.53244

12.a63l
r7.2295

5.05244 0.96023 0.142093 0.540302 4.33708
8._s4648

12.4(fi4
17.232

10.2322 080n2A 0.072513 0.59783 435244
8.54648

\2.4124
1.7.23(9

296.326 0.6't195 0.002576 0.652438 4.37416
8.5-5q)9

12.8814
1'1.2434

From Floquet theory it follows that the modulus of the eigenvalues ); of tD(r)
must be < 1 for boundcd solutions. The )i are the roots of:

)2  -  t r (o ) )  *  Deto  =  o .

Det Q is obviously thc Wronskian of Equation 39, hcnce Dct O - 1 and tr(O) =

yt(p) * uz(p)'. A priori two integrations arc nccded to compute it. However, it is
easily seen that yl is an even t'unction aru) y2 an odd function because P is even.
Explo i t ingth is  f leaturc when compar ing O(n)- l  =  O(-7r)  we have:

(41)

(42)
yz(n) '  -az(")

- y r ( r ) '  y t ( " )

y r ( r )  - A z ( 7 r )

-ar ( " ) '  uz6) '

Hcnce, y2(r)' = 91 ( zr ) and tr(O ) = 2y1 (r). The condition ); ! 1 is now simply:
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.IABLE IV
Properties of Ro(d).
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Ou!of-planc ln-plane

P Q ;  c )  l * 2 c .

1(o.s + \/t / k dn)' - 3 lzm + s l al
P . " "  :  P (o )  r+c13+3 lm+2 \ / t l k )

| 19.7727 c

P - ;  :  P ( K  )  1 + c \  3 + 3 l m + 2 \ / i m t l k l

1 * 1.08395 c

1 * 2c \5 - 3 I rn + e I m. E(k\ / K (k))

I * 1.08395 c

- (2 '/t / k d" + 31,") + 2c.

( (o.s  + /5 /*  dn)r  -  3 /2m 1 s/ t \
- (2y6/k +t / * \  +  2, .

l(o.s + $/k)2 -3l2m j s/a\
-6.772(A + 9.77?7 c
*(2J imt /h +3lm\  + 2c.

{(0..s + /3mrl*)'� 3/zm + 5/41
-4.08395 * 1.08395 c
-(2 + 3/m) *2c

ls  -  z /n 1e /m t ( t ) /  K(k))
-5.19677 * 1.08395 c

mr = 1 - m and the argument of dn ( \ is v5lk8.

(43)

instead of the usual tr(O) < 2. One ttegratiott is suflicient to determine the
stahility of the solutiotts. Q(r) canbe rewritten as:

o(n)  =
y t ( r )  o

vr( r ) '  uO)
(44)

When y1(n ) = 1 thcre are periodic solutions with period r. The Floquet represen-
tation of the solutions gives no further information about the solution. We must
distinguish the cases of Table V. The period of the functions is ?r. When yl (r') = 1
the same table holds with a period 2r. The unslable solutions are related to thc

l l  ' l
fact that a matrix of the typ" I 6 i I cannot be diagonalised. The full Jordan block

form is needcd. Table VI contains some evaluations of y1(r) for the out-of-plane
periodic function. All the entries in this table are smaller than 1. The bold valucs
correspond to the c- values for a tether wilhout end masscs. The corrcsponding
fundamcntal solutions are plotted in Figures 3-14. Whcn 91(r) < I it is the rcal
part of thc cigcnvalues of O( r). When the angle 9 delined by d = arccos 91(?r) is
an exact divisor of r, g = r ld then y1 is a periodic solution with period d2r.This
is the case for c = 1: q = r 16 up to the numerical precision when doing more



330 J.v BREAKwELL ANDF.L. JANssENs

TABLE V
Type ofsolutions for y1(r) = 1.

v l (n )  t i r ( n ) '  d  O ( r )  g '  s2

r + 0 0 1 0
E i I

I a
0 1

1 0
0 1

o + o

1 0 0

unstable p€riodic

odd

peri(xlic unstable

even

periodic periodic

even odd

TABLE !'I
yr (r) values oul-of-plane.

c *0.00 +0.25 +0.50 +0.75

2 .--0.95'7'156 0.987358 -0.79W31 -0.46083

3 -0.053E66 0.3538(6 0.688568 0.910853
4 0.999951 0.95-5532 0.793837 0.-542853
5 0.237152 -0.0868625 -0.394949 -0.65805,1

6 -0.854287 -0.969916 -0.999�472 -0.945163

7 -0.815751 -0.625096 -0.390529 -0.131206

8 0.133439 0.385055 0.607,184 0.787588
9 0.915785 0.98630-5 0.997188 0.9500-55
10 0.4197t7

precise integrations (Loc Vu-Quoc, 1986). The first flcxible mode has a period of
six orbital revolutions. The total phase angle of thc solution over r - 112 orbit
period is 13/ 12 and 13.(2r ) over six orbit pcriods. The remaining figures allow to
dctcrminc A in the interval 0 - 2?r instead of in lhe intcrval 0 - 7r. For the next
mode c - 2 the phase angle is approximately 7 f4r per half orbit period. If this
relation were exact there would be 21 periods in six orbits. The same patt€rn of an
increase by eight periods over six orbit periods holds with decreasing accuracy for
the higher modes.

The values 9r (r) as a function of c are represented in Figure 18. They contain
intcrvals ofTable VII whcrc yl(7r) > 1.

At each boundary ctow or chigh there is a periodic solution (one even and one
odd) while the other is unbounded. If the interval gocs to zero the periodic solutions
are coexistant and there is no stability problem. At thcse 'critical points' there are
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0 .

- 1 .

0 .

- 0 .

0 .

0 .

0.

0 .

0 .
0 .
0 .

- 0 .

- n
- 0 .

Figs. 3, 4. OuFof-plane fundanrental solutioDs fo. ,, = 0, c - 0.

Figs. 5, 6. Out-of-planc fundamental solutions for t,/ = 1, c = 1�

two periodic solutions with thc samc period Qr or 2tr). Numerically the instability
intcrvals seem to disappear. If this is truly the case or not is a dilficult question.

Figs. 7, 8. Out-ot-plane fundamental solulions for z : 2, c = 3.
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Figs. 9, 10. Out-of-plane fundamental solutions for / = 3, c : 6.

0 . 1
0 .

0 . 0

- 0 .  0

Figs. I  l .  12. Oul-of-planc fundamental solul ions for,,  = 4,. -  10.

qucstion. The answer is known for some P(d) functions in Hill 's equation. For
praclical applications the timc constant to double the amplitud€ increases quickly
when y1(r)barely exceeds one. Taking 1.5 h as a lower bound for the orbit period

Figs. 13. 14. Oul-of-plane fundamenral solut ions for y = 5. r = 15.
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Figs. 15, 16. Even periodic solution - period r - for c = 9.43,16.9 (Po).

Fig. 17. 91(r) versus separation constant c, in-plane (&).

wc have:

yr(r) '"* - 1.00t + Time constant - 22 days

yr(r).* = 1.0001 =+ Time constant - 217 days

gr(r)'"' = 1.00001 + Time constant -6years.

Depending on the duration of the mission one can require that yt(n)max is below
a certain value for the admissible z;. This requirement gives a bound for ru bclow
which the instability inlcrvals must be avoided. Notice also that difference in z;
values has slabilised on Aru = 0.735 and ut - k Lv + 0.1987.
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0 . 5

Fig. 18. y1 ( r ) versus separation constant c, oul-of-plane ( Po).

TAI]LE vII
lntervals of c for unstable solutions (out-of-plane).

ch i rh  ch i  -  c lo  cnu ! l t (T \

0
1 0.712
2 2.10
3 4.01
4 6.44
5 9 .41
6 t2.91
1 16.952
8
9
10

0
0.850 0.078
Lm 0.100
4.-"1 0.060
6.48 0.040
9.43 0.020

12.93 0.02
16.961 0.009

0
0
0

0  - l  0
0.8 1.0082 0.86015
2.15 -1.00423 1.6331
4.4 1.00157 23462
6.46 3.12m
9.42 1.m016 3.8692

12.92 -1.00005 4.(fr7a
16.91 1.00001 5.34551
2r.53 *1 6.0810

.64 1 6.8164
32.29 -0.99E)q) 1.5511

For the in-plane function we see from Table IV that in order lo have 4(d) > 0
we need c > 3.7676 or u > 2.290. For smaller values of c onr: solution is likely to
be cxponentially unstable.

The bold values in Tablc VIII are unstable. The function is given in Figure 17.
As yr(O) : 629.3, yr(15) = -0.9836, gt(21) = 0.014 the lwo rigid modes and
the first two flexible modes are unstable for a tether without tip masses. The result
for the rigid modcs is related to the assumptions about the motion of the COM.
The instability in rotation (c = m = 1) is linear in time as thcre is one periodic
solution. There is no 'stiffness' or restoring force for the particular rate of totation
that was chosen. Thc tether can a p ori revolve at any rate. The intelpretation is
that these two instabilitics are related to the nroblem formulation and that thev
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TABLE VIII
yr (tr) values (in Plane).

335

c +o.oo +0.20 +0.40 +0.60 +0.80
1 1
2 -0.74

3 l.sE
4 -1.3s

5 -0.0r

6 1.07
7 0 .15
I -O.92

9 -0.748

10 0.254

a.44 -9.63 -7.20 -3.79

1.37 2.47 2.10 2.32
0."12 -0.09 -o;14 -1.16

-1.33 -1.13 -0.8 -0.41

o.37 0.68 0.91 l.M
l.0l 0.87 0.66 0.42

-0.13 -0.38 -0.61 -O.79
-0.9)1 -0.01J -0.q?4 0.883
-0.578 -0.383 -0.0r72 0.044

TABLE Ix
lntervals of c for unslable solutions (in-plane).

9 r  ( n )

0 0
1 1.03
2 Z . l
3 3.7
4  5 .77

6 11..21.
7 t4.75
8 18.79
9 23.36
10
1 1

1 l
1.9 0.87
3.1  I
4.45 0.75
6.2 0.48
8.50 0.24

11.38  0 .17
u.az 0.07
18.82 0.03
233a O.O2

0 629.3
1.4 -9.63

2.6 2.10
4.0 - 1.35 2.3'12
6.9 1.01 3
8.36 -1.01 3.619

rt .29 | .$295 4 .2'74
r4.7A ,1.00064 4.9m
18.805 1.00014 5.653
23.31 -1.00003 6.355
2A.4A l.00001 7 .64
34.13 -1 7.777

are not dang€rous. These modes can not bc influenced by the mass parameters.

The instability of the frst ttro deformalion modes shotrs that a tether without end

masses daes not retain its straight linre confguratiott while revolvirtg.
Tabcl IX gives the distribution of the in-plane instability intervals. As expected

instability is the rule rather than the exception for c < 3.76. When c increases further

the instability intcrvals seem again to contract to points where the two periodic

solutions coexist. A practical stability (= slow cnough instability) is achieved from

c = 23.37 or v = 6.355 onwards,
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8, Analytic Approximation of the Critical Points

To apply the rcsults of Appendix A (Equation 12) we evaluated:

t -
9" = I  \ /A"dt

0

o

1  I  a ' 2
, l t  -+ I  L dt+ o"o = 0.808742

r .  J  a ; t -

II;o
;- /-T

=+ 9" - 6.05625

a"; = -4.71397 .

(45)

(46)

(47)

(48)

The asymptotic separation between the critical values/or in-plane and out-of-plane
is

" J i  = 
*= 

0.5186 + L,u - , /a L, f i  = 0.733s.

This value is closc to the observed 0.735 for the out-of-plane critical values. The last
two in-plane differences from Table X are 0.709 and 0.713. The in-plane difference
is not yet stabiliscd but going lo the predicted value. An approximate formula for
the critical values (Equation 14, Appendix A) can be written as:

'n = "t${lz+

Table X givcs a comparison of Equation .l8 with the cm,x values.

Out-of-plane + JG = 0.5192 + {0.5 + o.zs_9#\

tn-p lane + , / r .  =0.519n + {o .s  r  /o .zs - '# t

The precision for the extrema of./c.* is remarkably good, also for the lower
values of c, wherc the instability intcrval is not ncgligible. Notice the shift in z
between thc in-plane and oufof-plane values.
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TAI]LE X
Numerical and analytical crit ical values.

Out-of-plane In-plane

/., . ,  (num) \/r" VcnN (num) t/c"

0.894
r.4({'
2.010
2.542
3.069
3.594
4.112
4.640
5.161
5.682

1.183
r.612
2.000
2.449
2.891
3.360
3.844
4.336
4.434
5.337
5.842

0.8868 (r' - 2)
1.465
2.008
2.5409
3.0687
3.596
4.119
4.612
5.164
5.685

1 . 1 7 9  ( n : 1 )
1.543
1.955
2.400
2.861
3.34'7
3.836
4.332
4.432
5.336
5.U2

9. Adjustment of the End Masses

Th€ in-plane instability for a revolving tether can be removed by adding appropriate

end-masses. It is sutficicnt to consider equal end masses' From Tables VII and IX

we have the minimalvalues of 14 to give the critical points the character ofperiodic

solutions. The in-plane condition dominates 1,4 > MAX {3.594,4.834}. This can

be translated in a Aru - u2 value Lu = 44.834 = 6.836 which in turn puts a

lower limit on thc ratio of the cnd mass over the distributed mass:

t 7 r  / -  I  r t
s n - c o s l - ( l  

^ , ) l  
=  0 . 2 2 7 7

1

For a tether of 200 kg this mcans end masses of Ia27 .6kg. Smaller end masses can

be used by checking that the lowcst valrc 1/V, corresponding to ,2, is not critical

and making Az a multiplc of A \/;. Table XI shows lhat an end mass of 1.8 times

the tethcr mass gives a ,,82 value of 3.387 which is in bctween 3.069 and 3.594

(out-of-plane) and 3.360 and 3.844 (in-plane). The analytical approximalions are

sufficient for the out-of-plane check. In-plane, this value is just above thc unstable

interval 3.348 - 3.370. For mass ratios which give a multiple of J) \/6 the 1/6 value

from m2 is systematically clos€ to a critical in-plane value. It is better to select the

mass ralio such lhat Jc2 and Jca move away from a critical poinl. The general

conclusion is that e nd masses are needtd to avoid itt-plane instabilities.Depending

i
_ , =  9 .14  .
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TABLE X
Adjusted end masses.

A p p i ( r > r )

10

4.401 0.3494 1.798 4.31541
8.52141

12.8518
17.2171

5.134 0.3010 2.510 4.9922
9.557

15.0296
m.1336

5.868 0.2645 3.324 5.68265
11.399
11.2t42
23.0557

6.601 0.235'1 4.251 6.38254
12.4443
19.4032
25.9811

7.335 0.2125 5.2a'7 7.08885
14.301
21.5945
2a.9Wl

11.469 3.387
40.568 6.369
89.010 9.434

156.82 12.523
t4.951 3.K1
50.447 7.103

120.459 10.975
212.7 4a 14.5

18.988 4.357
70.668 8.406

r56.7'tr 12.521
21'73\O 16.653
23.560 4.854
88.964 9.432

19'7.944 14.(rc9
350.515 14.722
24.670 5.3-54

109.410 10.460
243.958 15.619
432.323 20.792

on the mission and the tether properties, end masses that assure in-plane stability
are readily calculated.

Appendix A: Hill's Equation

a" + P(t; ))Y -- o (A1)

The study of thc linear differential Equation A1 wirh P(t; )) > 0 and periodic
is a spccialised subject. P(l) depends on a parameter ), and has pcriod ?. From
P > 0 it follows that P can be considered as even when the origin is chosen in an
appropriate way (translation).

If P were a constant the solutions would be the harmonic functions with oeriod
2r ft/P or circular frequency e = JP. These solutions are always period'ic and
boundcd. The surprising fact is that for P(t) satisfying rhe conditions mentioned
above, lhe solutions can be unbounded lor particular values of ). This happens also
when the variation of P over a pcriod is small compared to its average value.

In general the solutions to Al are not preriodic. The conditions under which one
of the two solutions have pcriod 7 or 2? is known as Floquet theory. Summaries
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ot Floquer theory are given in Hochstadt (1975) and Nayfch and Mook (1979)'

In most of lhe cases when there is a periodic solution (period ? or 27) the other

solution is unbounded. This is proved lor lhe Malhieu cquation (P = a * b cos 2l)

hy lnce ( 1956).

From the analogy with a harmonic oscillator we expect that when y'P * iJ

a mu iple of T the oscillator sees an excilation (parametric) in phase with its

resonance frequency. This can be thought of as an internal resonance condition

The exact dependcncy of P on ) sc€ms to play a rolc to a lesser exlent Magnus

(1966) obtained strong results when considering_P(l ) = ) 
lA(l) 

where Q(t) is

cven periodic independcnt of ,\. ln this case t/ P goes to y') for ) large and the

resonance condi t ion b" .ut . .  v5-  nT l r .Thc rcsul ts  o l  Magnus are not  d i rec l ly

applicable to Pr,0(l)which havc a structure:

P ( r ) i , o  =  l l t , o ( r )  +  ) A " ( t ) . (M)

Thc variation of the l'unctions P;.s(l) depends on the Parameter. A"(l) is the same

for the in-plane as the out-of-plane equation. It will bc shown that a similar result

remains valid. Assumc an even periodic solution of the type:

y( t )  = A( t )  cos [ I . ( t ) ]

whcre A(l ) is evcn periodic. Substituting Equation A3 and its second derivative in

Equation A1 gives:

l A t t  -  A F t 2  {  A P ]  c o s  F  - l 2 A t  F '  * A I " ]  s i n  } ' = 0 . (A4)

For Equation A3 to be a solution of Equation A1, thc coefficients of cos -F and

sin l' musl vanish. The condition that the coefficicnt of sin -F vanishes gives the

followins relation bctween A and 1i with C a constant:

A = C l v r y .

Using Equation ,A5 in lhe coclficient ofcos F of Equation A4 gives:

l F " 1 2  , l  l F " l '
L F I  -  t  t r , l (.46)

Equation A6 is a complicated nonlinear differential equation for I'. It can also be

considercd as a rcprcscntation formula for P. Choosing:

' Averagc valucs of X(t) over a period ? are denoted,f, .

(A3)

(A5)

P = f ' '  - i



340 J.V BREAKWELL AND F.L JANSSENS

B
F = p t / ) +  _ + - :

.'/ ^ /^-1

with a, p, 9 unknown functions (period ?) rhe derivatives appearing in Equation ,{6
can be compulcd. By collecting thc terms according to their power in ), neglecting
higher ordcr lerms ()-", n > 1) and comparing the result with Equation A2,
relations defining a, B, g arc obtained. Some intermediate results:

F'2  =  2o '  /  1  ) , :2  +  1" ' ' �  +22 '  a '1 i ^

t  - ! l '  =  l { l ' ,  z1 t "  12  1o "  -  a '  1  !t F ' t  L o ,  l ' - L ? t l  l ? n  , p ' l  ^

l y l '  =  l { l  *  t l { l  l o "  -  o ' l  . l e : l 1 " "  o ' t ' l  1
r F , l  - l r , l  - \ t 7 l  1 7 - V ) - l V ) l j "  l l J r .

Identifying the powers in ) with Equation A2 gives:

,  f l ro r lr }  = - + < -
2p'  14

.'/4at

I  19/ ' f  i  1- ,  
L j t  I  2e ,

u'= _ +{r ,  * : l# l ' }
I e " l 2
LAJ

p'2 : A- =+ p( (A8)

(Ae)

(A7)

(A10)

(A11)

(A]2)

The definition of Q rcquires ,4" > 0. The coefficient is the same for the in_plane
and the oulof-plane equation. It is computed by numerical integration. Usir€ the
result for l,r, 0 can be rewritten:

r r t o  , .  1

a v A n  J 1

After computing:

T
r -

p r :  I  \ /A" ( l t
0

and making ) large enough to neglcct the term in B:

t

I
o

a( t )  -  I
0

T
. l f

d t -  -  I
o

II;o
2\/A"

T

a r =  I
0

A r  2
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(A13)

This is a periodic solution to Equation A1 provided lhe change of phase ,F(l 1
T) - F(t) = 2tr. The same analysis with an odd prcriodic function, by choosing
sin a in Equation ,A.3, would give the same result. This means that the unstable
intervals reduce to points when ) increases. The analysis does not indicate if this
happens for a finite ) or not. Ultimately, these values will settle on:

,  / \ ,  - \/PP -Aeror +E;
(A14)

where the phase shift used is 7r' to account for the periodic solutions 27. The cone-
sponding asymptotic separation between the ,\ valucs that give periodic solutions
ls:

^ / ) = (A1s)

When the result A14 is used as an estimate for )k, the k does not nccessarily
corcspond to the true ftth interval as the result obtaincd assumed ) large. This
holds in particular for lhe in-plane periodic function which is not positive for small
values of the separation constrnt-

Refercnces

Breakwell, J.V and Andeen, c.B.: '1977a,J. Spacecralt Rocters l4 (9), 556-561.
Breakwelf, J.V and Andeen, G.B.: I97'7b, Proc. AIAA S!rynsiu f)y amics and Control of Large

F leti b le Str uc ture s, Blackburg, VA.
Breakwell, J.\1' and Gearhart, J.W.: 1987, Adu Aston. Sci. 62, .8(t,2l7.
Gearhart, J.W.: 1990, Boostinga Tethered Satellite's Orbit around an Oblate Planet through Resonant

Pumping, Ph.D. Diss., Stanford U.
Janssens. F.L.: 199�0. SUDAAR 607.
Janssens, F and Crclfin, E.: 1985, ESTEC LWP 1397.
Kulla, P.: 1982, nes!/, Estec Co,ttr.4376EO]NLEP(SC).
I-oc Vrl-Qucrc: 1986, Memorandum UCB/ERL M8686.
Simo, J.C. and t,oc Vul)u(xt 1986, Computer Meth. Appl. Mech. a dEng.5E,79-116.
Simo, J.C. and Lc VU J)voct l98f, Computer Meth. Appl. Mech. and Eng. 66,125-161.
Hochstadt, H.: 1975, Dilfere tial Equatiotrs - A Moden Approach,Dover.
Nayfeh, A.H. and Mook,D.T.t 1979, No li ear Oscillatio s.Whitcy.
Ince. F.L.: 1956. Orrli ary Difcre tiat Equarlon-s. Dover.
Yakubovich, VA. and Starzhinskii, VM.: 19'19, Linear Differential F4uatiorrs t+'ith Periodic Coefi-

cients, Vols. I, II, Wiley.
Magnus, W. and Winkle\S.i 1966, HiII Eq,./ariox, lnteNcience.

'  t t T
F ( /  +  7 " )  =  F ( / ) +  ? r ! ^ +  ; .

\/^

7f


