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Abstract. We analyse the transverse vibrations of a tether, modelied as an inextensible cable, and
revolving at an average rate equal to the orbital rate. The reference motion is a revolving rgid
tether. During this motion the force in the tether (time and location dependent) remains, in a first
approximaltion, aligned with the tether axis. Separation of variables for the vibmtions about this motion
gives a Legendre equation for the spatial dependency of the deformations and Hill’s equations for
lime dependency of the in- and out-ol-plane deformations. The boundary conditions on the Legendre
equalion generale a series of admissible values of the separation constant that become equidistant.
The two Hill's equations generate a series of intervals, contracting to equidistant critical values,
where the solutions are unbounded. The admissible values of the separation constant must avoid
these intervals. Asymplotic expressions for the separation constant and the critical values are given.
The first and second in-plane deformation mode are unstable for zero end masses. By increasing the
ratio of the concentrated over the distribuled mass the deformation modes can be stabilised and the
values of the separation constant can be made a multiple of the distribution of the critical points.
Intreducing unequal tip masses does not affect this result.
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1. Notations and Abbreviations

1.1. TETHER DATA

l tcther length

mi2 concentrated tip masses of the tether

m system mass (= my + ma2 + ol)

T ratios of end masses and disiributed mass to total mass
p radius of gyration of the tether (i = m p?)

o lincar density of the tether

E intrinsic length of the tether; origin at COM,

takes the valucs —s) and s; at the end points,
sy ={mz 4+ olf2)/m, s, = l{(my + al/2)/m

fret reference length to obtain standard Legendre equation,
12, = s152(2m) + 2my + ol) /ol

Sy normalized intrinsic length s/{

8pi values taken by s; at the end points of the tether, ¢ = 1,2
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1.2. ELLIPTIC FUNCTIONS

k modulus of elliptic functions

q nome of elliptic functions

K(k) complete elliptic integral of the first kind
E(k) complete elliptic integral of the second kind

1.3. VARIABLES

n inertial rate of rotation of R, (9;)
e constant rate of rotation of the COM of the tether
g rate of rotation of a circular orbit at distance R, ni = puf B3

An(t) dimensionless function that multiplies the tension function [ f(s)] for
the revolving tether. Reduces to 3 for a gravity gradient stabilised

tether. A, (1) = [y/1+3/4¢2 + ? afn(x,)]2 +3 cos? aft) - 1

in-plane angle from local vertical to tether axis

radius of gyration over distance to COM, p/ R,
gravitational constant times mass of the attracting body
parameter in Legendre equation

TR M2

1.4, VECTORS

f dynamic inner force associated with the dynamic displacement
{(first order quantity)
dynamic displacement from a reference motion
(first order quantity), r = [z, y, 2]7
inner force in the tether (tension) at s
applied force per length, in this application: —o u/ R2 1,
radius vector 1o the matcrial point s of the tether
me radius vecior of circular reference orbit
unit vector of R,
curvature of the tether in the reference motion

-

P IR

Veclors are bold face, their modulus is plain text.

1.5. ABBREVIATIONS

COM  Centre of mass

GGS  gravity gradient stabilised
RHS  right hand side

ODE  ordinary differential equation
PDE  partial dif{erential equation

v tilde matrix corresponding 1o vector v (represents
the cross product)
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X vectorial product or cross product
() derivative w.r.t. the spatial variable s or s,
() derivative w.r.t. time t or ¥ = ngt

2, Introduction

Breakwell (1987) and Gearhart (1990) studied the problem of expanding a circular
orbit by having a tether revolving in the orbital plane with an average rate equal
to the orbital rate. Modelling the tether as two equal point masses connected by
a masslcss bar, the result is that such an orbit expansion is possible when J2 is
included in the gravity potential. The tether length must be varied in an appropriate
way. This note studies the stability of the revolving tether when it is modelled as
an inexiensible cable with zero bending stiffness.

The approach used for this vibrational problem of a onc-dimensional continuum
is described in Kulla (1982), Jansscns and Crellin (1985). Spatial discretization of
the tether is not needed. Loc Vu-Quo (1986) and Simo (1986, 1988) use a similar
approach for applications to nonlinear problems. The motion of the rigid revolving
tether as obtained by Breakwell and Gearhart (1987) is the reference motion for
the vibrational problem. The tether motion is described by elliptic functions and
the rotation rate varies between 0.44 and 1.788 times the orbital rate. Deviations
of the COM of a circular relerence orbit are neglected, Janssens (1990).

Separation of variables on the induced linear vibration problem leads to Legen-
dre equations for the mode shapes and two Hill’s equations for the time dependency
of the in-plane and the out-of-plane deformations. The boundary conditions gen-
erate admissible values of the separation constant in the Legendre equation. These
values must give bounded solutions for the two Hill’s equations. This is investigated
numcrically and semi-analytically from asymptotic expressions for the separation
constant and the critical values of the Hill’s equations. The first two in-plane defor-
mantion modes are unstable when the end masses are zero. They can be stabilised
by adding large enough end masses.

3. Problem Formulation

As starting point we have one Kirchoff equation (balance equation) and an cquation
expressing the fact that in the inextensible cable model the inner force is tangent
1o the tether:

dF dR?
- to—7r = F, (1)
dR F

T )
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Equations 1 and 2 arc a special case of a set of four equations describing a one-
dimensional elastic continuum (Janssens, 1985; Simo, 1988). They will be lin-
earized about the reference motion (R, , ny ) for the COM and a(t) about the
COM:

ni-o= p/ R, 3)
&(t) = ﬁk’”" dn(do(0)t | k%) (@)
3n. 1
kzz%, K(k)k = V3 ———. o)
aO( ) 1+ ;-‘52
For e = 0: k% = 0.938446 , k = 0.968734
a
Fe(sn, ) = 5 il An((1 = 87) ©)

By applying the procedure
R=R.+r, F=F.4+1f (withR.(s)=R. +3s1;)

and retaining only first order terms in r, f independent of their magnitude compared
to the cquilibrium terms, which may be zero, the equilibrium terms cancel out and
we obtain in a first step:

df dr:  dF,
%+ne><f_am—ﬁ(Re)r (7
r f Fef Fe
E"'hexr—}‘:—‘;‘"lﬁg FE. (8)

The terms s, x r account for a possible dependency of the orientation of the
equilibrium frame on s (equivalent to Vi, = Vi + Qxr with s as independent
variable instead of t). The right-hand side of Equation 8 is rewritten as

1 12
S It

by using vector identities. Substituting these results in Equations 7-8 we have the
following linear first order system of differential equations in s:
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Fig. 1. Axis system.

)

[;]’: o[fiﬁ(_)i_ dFa]
dic  dR

The terms occurring in ¢ will be represented in an axis coinciding with the

rigid tether (Figure 1). The unit vector 14, is along thc z-axis, hence i?e =

diag {0, —1, —1}, and &, is zero. The second order time derivative dr?/dt? in a
frame rotating at ny 4 ais:

2
‘(% =¥ 4 (ng + @)lxr 4+ 2(ng + &)1xt + (ng + &)%1,x(1,xr). (10)
As the z-axis is perpendicular to the orbit plane the component equations corre-
sponding to Equation 9 are casily obtained with r(s, t) = [z y z]7 the displacement
of a material point of the tether from its location [s00] on a rigid tether. For the
term dF,/dR, the lincarized gravity at R, is also expressed in this frame by a
rotation ¢. Denoting the components of the dynamic force: f(s,1) = [f; fy fz]T
we have for 9:

=0
2

L

VA
2

¢ = 3 Iz

g n?‘\ tref Aﬂ(t)(l - ‘5%)
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=0 —2(ngx +a&)y— (nk + &)a — éy] +

2 2

— onk [(2 cos? & —sin® &)z — 3 sin a cos ay]
fy=ol§—2nk + d)t - (ng + &)’y — da] +

— o n% [(2sin? o — cos® a)y — 3 sin @ cos a z]
fo=0[i+ k2],

This set of equations decouples into an in-plane and an out-of-plane set. Combining
terms we have:

0 (11)
, 2

YT Rl B A1 - 2 & "

fi = ol = n A(t)a] = 20 [y + (nk + )] (13)

£y = o [ — w% {Au(1) - 3 cos 20} y] 4 20(ng; + é)d) (19

o 2 £, (15)

ong 2 A (1)1 - 82)

fl=c[2+ n%\ z]. (16)

4. Separation of the Out-of-Plane Equations

The out-of-plane deflections z(s,t} are described by the system 15, 16. Trying a
solution of the typc:

z(s, 1) = Z(s) Tolt) (17)
fa(8,1) = ®,(s) 03 An(t) To(t) (18)
we obtain
o2
P.(s) = 7‘1‘ (1-s2)2 (19)
{A=$2)2"Y = -2 2)1% (20)
To+ nd To = —cnd A, Tp (21)

where —c is a separation constant. Changing the independent variable in 20 to s,
(derivations w.L.t. s,, are still denoted by ') it becomes a Legendre ODE in standard
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form with 2¢ = v(v + 1):
(1 —82)Z" ~28,2' +2c¢Z =0. (22)

The differential equation for Ty is a Hill’s equation with nZ.[14+¢ A4,(#)] as periodic
function. Changing to the angular independent variable ¥ = nxt it becomes (again
with the same notation for derivatives w.r.t. 9¥):

T+ Po()Ty =0 (23)
where
Py, e)=14¢cA,. (24)

The boundary conditions for22 are Z”(—s,,1 ) = Z"(s,2) = 0 when end masses
are present. When the end masses go to zero the s,; go to £1 and these conditions
become Z(+1) = finite. These boundary conditions generate an infinite series of
admissible values ¢;. The solutions to 23 must be bounded for all these values.
When both solutions are bounded none of them is, in general, periodic. Some facts
on the Hill equation are collected in Appendix A. Hill’s equation generates a series
of intervals [¢x — ¢} | for the separation constant where at least one of the solutions
is unbounded. This series can be studied independently of the Legendre equation.
These intervals go to zero with increasing ¢. The boundaries of these intervals
are referred to as critical values. When the interval is so small that in practice the
boundaries can be considered to be as coincident, the instability or divergence of
the solutions is very slow. Everything happens as if there are two periodic solutions
for that particular value of ¢. Hence the practical problem is to avoid these intervals
until their width can be neglected. The determination of this limit depends on the
application.

5. Separation of the In-Plane Equations

From 11 we see immedialely that z(¢, s) can only depend on the time z = z(t).
Again assuming solutions:

y(s,1) = Y(s) T(1) (25)
L(s,1) = By (s) 0 Au(t) Ti(2) (26)
for Equations 12, 14 we have:
2o (1= 2V =2/ dy =

i Y (n.+ &)k
= 2[T; — 5% {An(t) — 3 cos 2a} T} 4 .

(27)
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Neglecting for the moment the term in i, a separation of variables is possible. With
a scparation constant —¢’ and similar modifications as in the out-of-plane case:

(1—s2)Y" —28,Y' 42V =0 (28)

Ti + Bi(9)1; = 0 (29)

R(ﬁ;c'):—(ziJri) + A, (30)
nE m

We again have a Legendre ODE with the same boundary conditions as in the
out-of-planc casc. This generates the same series of admissible values for the
separation constant ¢; = ¢;. This same series must give bounded solutions for
the Hill’s Equation 29. As the peridic function P; differs from Py the sequence
of critical intervals belonging to 27 will be different. However, the dependency
of these functions on thc scparation constant ¢ via A, is the same. As shown in
Appendix A, this implics that the critical values are asymptotically the same.

The in-plane equation contains a RHS proportional to . The assumption ¢ = 0
leads to an inhomogencous Legendre equation. Assuming

&=C —Ali -

d(n. +a)

gives a constant RHS (= () for 27. This assumption may not lead to contradictions
for f, in 13. This point was not investigated further as it was assumcd that r and
fz arc only present in the rigid mode as for a rotating cable. The RHS does not play
a role then in the calcnlation of the admissible values for the separation constant.

6. Legendre Lquation — Mode Shapes
The Legendre Equations 22, 28 are in standard notation:
(1—2))y" ~2zy +v(r+1)y=0. (31)

The admissible values of the parameter » in 31 are such that the the boundary
conditions ¥"(—s,1) = y"(sn2) = O are satisfied. The mass properties of a given
tether define the points —s,; and sp» where the Legendre functions must be
evaluated. Table I gives a summary of the cases covered.

For a massless lether the reference length becomes infinite. For both ends the
Legendre functions should be evaluated at the same value zero. This is the limiting
case where the tension is constant in the tether. The value of this constant is not given
by Equation 6 as the product [;y s = 0 00 is undefined. In the remaining cases the
tether mass is taken into account. The tension in the tcther is no longer constant. In
first approximation itis maximum at the COM and decreases symmetrically around
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TABLE|
Mass properties.

m; my o om Ty 2 Td —31/% sz/% bt —8nl Sn2
me me 0 2m., ;— % 0 1 1 inf. 0 0
my omz 0 my 4+ ma WT-‘E m_::-znTz 1) 2 m inf. 0

0 0 oadl 0 0 1 1 1 % 11
Me M, 0 2. + ol Zm’:ial ZmT-‘}-o'l Zm:’iﬂ 1 1 %\W % ﬁ
0 myomtol 0 m;"ﬁ #{fal 2%+ Ty Tg NEEP: r:; l—i—f
m; 0 o m 4ol m1m+1=ﬂ 0 m]”:dl T4 270 + Ta 0" o 1
fmy my oom %‘; 1",;1 ”;l 2+ 7wy 21 + wa " H "

X =2m; 4+ 2m2 + ol

it. For the revolving tether the tension in each point varies by the same factor at
twice the orbital rate. Including higher order terms in the gravity expansion or the
exact gravity force makes this variation asymmetric along the tether length. Such
a model cannot result in a Legendre equation. When there are no end masses the
tension becomes zero at the end points. When end masses are present the tension
at the end points is in equilibrium with the force on the discrele masses.

The general solution y is a superposition of the two fundamental solutions: e,,
¢1. These solutions are calculated from the recurrence relation on the coefficients
of their expansion at zero. The second derivatives are calculated in the same way.
Let

y(@)=aep(z; v) + be(z; v). (32)
Then we need the values of v that make the following determinant zero:

eo(—8n1; V) €f{—sn1; v)
=0. (33)
eo(sn2; v) € (sn2; v)

No simplifications were found by replacing the second derivatives using Equation
31 or replacing the derivatives by a combination of solutions using a different
v. When the end masses are equal s,,; = s,2. As € is an even function and e,
an odd function, the same is true for their second derivative. Hence, ey(z; v) =
eg{—xz; v), ef(z; v) = —ef(z; v). Condition 33 reduces to €4{Sn2; ¥) = 0and
€Y(s,2; v) = O separately. The set of zeros of the determinant equation contains
always 0 and 1. The remaining zeros are easily determined using their constant

asymptotic separation (Janssens, 1985)



326 1.V. BREAKWELL AND EL. JANSSENS

TABLE I
Admissible -, values for a tether with equal end masses.
2w 8n va 3 I Vs Ve 7 Vs Av
0 1 2 3 4 5 6 1
2 0.845 2105 3363 4737 6179 7.601 1.5601
4 0.745 2264 3815 5518 7291 9098 1.8676
6 0.674 2425 4239 6215 8257 1032 2.1230
8 0.620 2583 4819 6847 9123 1142 2.3481
1 05573 2735 5 7429 9916 1243 1495 1748 2552
2 04472 3416 6564 9859 1320 1656 1993 2330 3388
4 03333 4517 8952 1357 1809 2270 2730 3192 4622
0 02773 5418 1085 1638 2194 2752 3309 3867 5589
8 0.2425 6200 1247 1883 2522 3162 3802 4443 6412
10 02082 6.899 1391 21.01 2813 3526 4239 4952 7140
T
Ay ~ . (34)
larccos(—s,) ) — arccos(sn2)|
For equal end masses the asymplotic separation becomcs:
Ave(sn) : 35)
1 ~
A arccos( sy, )
e
/2

When the tip mass is zero the formula gives the exact result A (0) = Land v = k.
This result was given by Breakwell and Andecn (1977a, b). When the equal end
masses increase the spacing between the vy increases. The flexible frequencics
move up and are at the limit pushed to infinity. The first flexible frequency (i)
becomes comparable to the asymptotic separation. In practice good estimales for
vy, are:

vi(sn) ~ (B = 1) Ave(sn) (306)

for a wide range of the parameters. The smaller the variation of the tension is
compared to the ‘average’ tension, the better this approximation is.

Equation 34 shows that Av attainable with unequal end masscs are the same
as the atltainable with equal masses. In the sequel it will be intcresting to have an
expression for the end masses that realize the same Ar. By using the definitions
of 8,1, 8$nz, S1, 82 and I we have for the ratio of each end mass lo the distributed
mass:
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30
25
20

15

\

0.9 0.95 1.05 1.1 1.15 1.2

Fig. 2. Ratios of cnd mass over distributed mass needed to obtain an asymptotic separation of
Av = 4.403.

my 1 1
s b gl 37
n ol 2(311.1 + 5712) [Snl Snl] ( )
ey 1 1
== | ——2,,]. 38
"2 al 2(Snl + 3712) [SnZ 1’12] ( )

Fixing Av makes r; and rz {functions of one parameter, e.g. ¥, = arccos s,3 < 7/2.
As an example the unequal end masses ry, r; nceded to obtain Av = 4.40386
are given in Figure 2. The corresponding v; are given in Table I11. When mass
mp — o0, $51 — 0 as the COM coincides with m;. The mass m; goes to
arccos(m /2 + 7 /Av) = 0.654 times the distributed mass to make Av the desired
value.

7. 1ill’s Equation — Time Dependency
With 9 as independent variable Equations 23 and 29 are of the type:

y" + P(7; )y = 0 (39)

and P refers to any of the cven periodic functions 24, 30 with period 7. The
transition matrix — corresponding to 39 in a first order formulation — after a period
T is:

yi(r) (m)

®(7) = (40)

() yalmy

where ®(0) = £ defines the initial conditions of the two independent fundamental
solutions 3, .
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TABLE IIl
Admissible  values for a tether with unequal end masses.

¥l T2 S$nl Sn2 Y2345
189112 1.71663 0.3359 0.362357 431756
8.52588
12.8586
17.2261
2.28001 1.4633 0.28842  0.408487 431918
8.5268
12.8592
17.2266
3.65305  1.09745 0.191388 0.49757 432885
8.53244
12.8631
17.2295
5.05244 056023 0.142093  0.540302  4.33708
8.54648
12.8664
17.232
102322 0801728 0.072513 (.59783 435284
8.540648
12.8728
17.2369
296.326 0.67195 0.002576 0.652438 437416
8.55909
12.8814
17.2434

From Floquet theory it follows that the modulus of the eigenvalues A; of ®(r)
must be < 1 for bounded solutions. The A; are the roots of:

A2~ tr(®)A+ Detd = 0. (41)

Det @ is obviously the Wronskian of Equation 39, hence Det @ = 1 and tr(®) =
y1(p) + v2(pY. A priori two integrations are needed 1o compute it. However, it is
easily seen that y; is an even function and y, an odd function because P is even.
Exploiting this feature when comparing & (7)~! = ®(—n) we have:
wir) —pnlr) n(r) —yalr)
= . (42)
—yi(m) () —yi(m) ()

Hence, ya(7) = yi(7}and tr(®) = 2y, (7). The condition A; < 1 is now simply:
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TABLE IV
Properties of Pio(?).
Out-of-plane In-plane
P(d; ¢} 14 2c —(2V3/kdn +3/m) + 2c.
{{0.54 V3/kdn)* —3/2m + 5/4} {(0.5 + 3/kdn)* —3/2m + 5/4}
P = P(0) 14¢{3+43/m+23/k} —(2V3/k +3/m) + 2¢.
{(0.5 +V3/k)* —3/2m 4 5/4}
14+99727¢ —6.772068 4+ 9.7727 ¢
Puoin = P(K) 14 ¢{=343/m +2+/3m/k} —(2/Fmifk +3/m) + 2¢.
{(05 + VB fk)® — 3/2m +5/4}
1+ 1.08395¢ ~4.08395 -+ 1.08395¢
Paverage 142c{5-3/m+6/m EX)/K(K)} —(2+3/m)+2c
{5 = 3/m +6/m E(k)/ K (k)
1+1.08395¢ —5.19677 4+ 1.08395¢
mi = 1 — m and the argument of dn( }is v/3/k9.
yi(m) <1 (43)

instead of the usual tr(®) < 2. One integration is sufficient to determine the
stability of the solutions. ®(7 ) can be rewritten as:

oo YHrE-1 (44)

y(ry

nir) e

’

b(r) =

yi(r) wi(r)

When y(7) = 1 there are periodic solutions with period 7. The Floquet represen-
tation of the solutions gives no further information about the solution. We must
distinguish the cases of Table V. The period of the functions is #. When (7)) = —1
the same table holds with a period 27. The unstable solutions are related to the

fact that a matrix of the type J (1] tll ‘ cannot be diagonalised. The full Jordan block

form is needed. Table VI contains some evaluations of y,(7) for the out-of-plane
periodic function. All the entries in this table are smaller than 1. The bold values
correspond to the ¢— values for a tether without end masses. The corresponding
fundamental solutions are plotted in Figures 3-14. When y,(7) < 1 it is the real
part of the cigenvalues of (7). When the angle ¢ defined by ¢ = arccos yy () is
an exact divisor of @, @ = n [/d then y, is a periodic solution with period d 2=, This
is the case for ¢ = 1: ¢, = /6 up to the numerical precision when doing more
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TABLE V
Type of solulions for y, (r) = 1.
w(m) wi(r) a ¥ Y ¥
10 Lo
1 #0 0 ' unstable  periodic
h odd
la i
1 0 #0 01 periodic  unstable
even
10 - C o
1 0 0 01 ’ periodic  periodic
even odd
TABLE VI
#1(7) values out-of-plane.

c +0.00 +0.25 +0.50 +0.75
1 4.866027 9.38575 -0.196978 —0.683096
2 0957756 0987358 —0.799937 —0.46083

3 —0.053866 0.353806 0.688568 0.910853
4 0.999957 0.955532 0.793837 0.542853
5 0237152 00868625 —0.394949 —0.658054
6
7
8
9

—0.854287 0969916  —0.999472 —-0.945163
-0.815751 0625096  —0.390529 -0.131206
0.133439 0.385055 0.607484 0.787588
0915785 0.986305 0.997188 0.950055

10 0.849717

precise integrations (Loc Vu-Quoc, 1986). The first flexible mode has a period of
six orbital revolutions. The total phase angle of the solution over # = 1/2 orbit
period is 13/12 and 13.(27) over six orbit periods. The remaining figures allow to
determine  in the interval 0 — 27 instead of in the interval 0 — «. For the next
mode ¢ = 2 the phase angle is approximately 7/4x per half orbit period. If this
relation were exact there would be 21 periods in six orbits. The same pattern of an
increase by eight periods over six orbit periods holds with decreasing accuracy for
the higher modes.

The values y| () as a function of ¢ are represented in Figure 18. They contain
inicrvals of Table VII where y(7) > L.

At each boundary ¢y OF chigh there is a periodic solution (one even and one
odd) while the other is unbounded. If the interval gocs to zero the periodic solutions
are coexistant and there is no stability problem. At these ‘critical points’ there are
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68 1 15 2
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0.8
0.5
Q0.6
0.5 1. 2 2,5 3 0.4
-0.5
0.2
-1
Figs. 3, 4. Out-of-plane fundamental solutions for v = 0, ¢ = 0.
1 0.3
0.2
0.5 0.1
[N 1.5 2 .5 3
-0.5 -0.1
1 -0.2
-0.3
-1.5 -0.4

Figs. 5, 6. Cut-of-plane fundamental solutions for » = 1, ¢ = 1.

two periodic solutions with the same period (7 or 27). Numerically the instability
intervals seem to disappear. If this is truly the case or not is a difficult question.

.5 1/ 1.5 2 ZV

Figs. 7, 8. Oul-ol-plane fundamental solutions for » = 2, ¢ = 3.
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-0.2

\
g.3 1 1.5 2.5i
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0\ 5 1.5 2@3

A
VARV

1.5 0.2
! ¢.1
X WA
0.9 1 1.5 2 2j5
-0.5
_1 -
Figs. 9, 10. Out-of-plane fundamental solutions for v = 3, ¢ = 6.
0.15
1 0.1
o\
1.5 /2 2.
-0.5 -0.0%
-1 -¢.1
-1.5 -0.15

Figs. 11, 12. Qut-of-plane fundamental solutions for v = 4, ¢ = 10.

question. The answer is known for some P(+) functions in Hill’s equation. For
practical applications the time constant to double the amplitude increases quickly
when y, () barely exceeds one. Taking 1.5 h as a [ower bound for the orbit period

1.5
1
SYWAW!
BV1 1.5 2\ 245 131
ST
LAY
-1.5

0.1
0.05
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-0.1

NANAN|
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Figs. 13, 14. Qut-of-plane fundamental solutions for v = 5, ¢ = 15.
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Figs. 15, 16. Even periodic solution — period  — for ¢ = 9.43,16.9 ().

ATV AV

Fig. 17. (=) versus separation constant ¢, in-plane (P;).

we have:

¥ (T)max = 1.001 = Time constant ~ 22 days

Y1(7 )max = 1.0001 = Time constant ~ 217 days

Y17 )max = 1.00001 = Time constant ~ 6 years .
Depending on the duration of the mission one can require that g (T )ya.x is below
a certain value for the admissible »;. This requirement gives a bound for v below

which the instability intcrvals must be avoided. Notice also that difference in v,
values has stabilised on A = 0.735and v ~ &k Av + 0.1987.
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Fig. 18. y (x) versus separalion constant ¢, out-of-plane ( Py).

TABLE VII
Intervals of ¢ for unstable solutions {out-of-plane).

Clow Chigh Ch — Co  Cmax  W1(T) vy
0 0 0 -1 0
1 0.772 0850 0.078 0.8 1.0082 0.86015
2 2.10 220 0.100 215 -1.00423 1.6331
3 4.01 4.-7 0.060 4.4 100157  2.3862
4 6.44 6.48 0.040 6.46 31290
5 9.41 943  0.020 9.42 1.00016  3.8692
6 1291 1293 002 1292 -1.00005  4.6078
7 16952 16961 0.009 1691 1.00001 534551
8 0 2153 -1 6.0810
9 0 26.64 1 6.8104
10 0 3229 0999999 75517

For the in-plane function we see from Table IV that in order to have F;(#) > 0
we need ¢ > 3.7676 or v > 2.290. For smaller values of ¢ one solution is likely to
be exponentially unstable.

The bold values in Table VIII are unstable. The function is given in Figure 17.
As y1(0) = 629.3, 1 (15) = —0.9836, y(21) = 0.014 the two rigid modes and
the first two flexible modes are unstable for a tether without tip masses. The result
for the rigid modes is related to the assumptions about the motion of the COM.
The instability in rotation (¢ = m = 1) is linear in time as there is one periodic
solution. There is no ‘stiffness’ or restoring force for the particular rate of rotation
that was chosen. The tether can a priori revolve at any rate. The interpretation is
that these two instabilities are related to the problem formulation and that they
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‘TABLE VIII
y1(r) values (in plane).

C +0.00 +0.20 +0.40 +0.60 +0.80

1 1 8.44 —9.63 -7.20 -3.79

2 -074 1.37 247 270 PRy

3 1.58 072 009 -0.74 -1.16

4 —1.35 —-1.33 -1.13 -0.8 —0.41

5 -0.01 0.37 0.68 0.91 1.04

6 1.07 1.01 0.87 0.66 042

7 0.15 -0.13 —0.38 —0.61 —0.79

& -092 0997 —0013 -0974 —0.883

9 0748 -0578 0383 -0.0172 0.044

10 0.254

TABLE IX
Intervals of ¢ for unstable solutions (in-plane).
Clow Chigh Cni — G0 Cmax wmir) s

0 0 1 1 0 6293
1 103 19 087 14 —9.63
2 21 31 i 2.6 2.70
3 37 445 075 4.0 —-1.35 2372
4 577 6.2 0.48 6.9 1.07 3
5 822 850 028 836 —-1.01 3619
6 1121 1138 017 11.29 1.00295 4278
7 1475 1482 007 14.78 -1.00064 4960
8 1879 1882 (.03 18.805 1.00014 5.653
9 2336 2338 002 2337 —1.00003 6355
10 2848 1.00001 7.064
11 3413 -1 .77

335

are not dangerous. These modes can not be influenced by the mass parameters.
The instability of the first two deformation modes shows that a tether without end

masses does not retain its straight line configuration while revolving.

Tabel IX gives the distribution of the in-plane instability intervals. As expected
instability is the rule rather than the exception for ¢ < 3.76. When c increases further
the instability intervals scem again to contract to points where the two periodic
solutions coexist. A practical stability (= slow cnough instability) is achieved from

¢ = 2337 orv = 6355 onwards.
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8. Analytic Approximation of the Critical Points

To apply the rcsults of Appendix A (Equation 12) we evaluated:

o = f VA, di = o = 6.05625 (45)
T 1 7 A2

. s 5 I dt = 0,0 = 0.808742 (46)

ay; = —4.71397 . (47)

The asymptotic separation between the critical values for in-plane and out-of-plane
is

Ave= - =05186 > Av = VZA e = 0.7335 .
This value is close to the observed 0.735 for the out-of-plane critical values. The last
two in-plane ditferences from Table X are 0.709 and 0.713. The in-piane difference

is not yet stabilised but going 1o the predicted value. An approximate formula for
the critical values (Equation 14, Appendix A} can be written as:

v =navE(g - 5 ) @

Table X gives a comparison of Equation 48 with the cp.x values.

Out-of-plane = /&, = 0.519n + {0.5 +1/0.25 - 0-49263 }
In-plane :}-\/c__0519n+ 0.5 + 025+28928}

The precision for the extrema of ,/Cn.yx is remarkably good, also for the lower
values of ¢, where the instability interval is not negligible. Notice the shift in n
between the in-plane and out-of-plane values.
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TABLE X
Numerical and analytical critical values.

Out-of-plane In-plane
e (oum) /& Vom (um) /e
0.894 0.8868 (n =2) 1.183 1.179 (rn =1)
1.466 1.465 1.612 1543
2.010 2.008 2.600 1.955
2.542 2.5409 2.449 2.400
3.069 3.0687 2.891 2.867
3594 3.590 3.360 3.347
4.112 4.119 3.844 3.830
4.640 4.642 4330 4.332
5.161 5.164 4.834 4.832
5.682 5.685 5337 5336
5.842 5842

9, Adjustment of the End Masses

The in-plane instability for a revolving tether can be removed by adding appropriate
end-masses. It is sufficient to consider equal end masses. From Tables VII and IX
we have the minimal values of /¢ to give the critical points the character of periodic
solutions. The in-plane condition dominates /¢ > MAX {3.594,4.834}. This can
be translated in a Ay ~ v, value Av = /24.834 = 6.836 which in turn puts a
lower limit on the ratio of the cnd mass over the distributed mass:

s, = COS [g (1 - ﬁ—y)] = 0.2277

—1 1—914
T2s2 20 T

Tn

For a tether of 200 kg this means end masses of 1827.6 kg. Smaller end masses can
be used by checking that the Jowest value /¢, corresponding to 14, is not critical
and making Av a multiple of A \/c. Table XI shows that an end mass of 1.8 times
the tether mass gives a /¢ value of 3.387 which is in between 3.069 and 3.594
(out-of-plane) and 3.360 and 3.844 (in-plane). The analylical approximations are
sufficient for the out-of-plane check. In-plane, this value is just above the unstable
interval 3.348 — 3.370. For mass ratios which give a multiple of I \/¢ the \/c value
from m; is systematically close to a critical in-plane value. It is better to select the
mass Tatio such that \/¢; and ,/c3 move away from a critical point. The general
conclusion is that end masses are needed to avoid in-plane instabilities. Depending
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TABLE XI
Adjusted end masses.
m  Ap Sni mifol wi(i>1) o N
6 4,401 03494 1,798 431541 11.469 3.387
8.52141 40.568 6.369

128518 89010 9434
172171 156823 12523
7 5134 03010 2510 49922 14.957 3.867
9.557 50447  7.103

150296 120459 10975
20.1336 212748 14.586
8 58068 020645 3324 5.682065 18988 4357
11.399 70668  8.406
17.2142 156.771 12521
23.0557 277310 16.653
9 6601 02357 4251 6.38254 23560 4854
12.8483 88964 9432
19.4032 197944 14.069
259817 350515 18722
10 7335 0.2125 5287 7.08885 28670 5354
14.301 109410 10.460
21.5945 243958 15.619
28.9091 432323 20,792

on the mission and the tether properties, end masses that assure in-plane stability
are readily calculated.

Appendix A: Hill’s Equation
¥+ P(t; Ay=0. (Al)

The study of the linear differential Equation Al with P(¢; X) > 0 and periodic
is a specialised subject. P(¢) depends on a parameter A, and has period 7. From
P > 0it follows that P can be considered as even when the origin is chosen in an
appropriate way (translation).

If P were a conslant the solutions would be the harmonic functions with period
2m /+/P or circular frequency w = v/P. These solutions are always periodic and
bounded. The surprising fact is that for P(¢) satisfying the conditions mentioned
above, the solutions can be unbounded for particular values of A. This happens also
when the variation of P over a period is small compared 1o its average value.

In general the solutions to Al are not periodic. The conditions under which one
of the two solutions have period T or 27" is known as Floquet theory. Summaries
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of Floquet theory are given in Hochstadt (1975) and Nayfch and Mook (1979).
In most of the cases when there is a periodic solution (period T or 2T’) the other
solution is unbounded. This is proved for the Mathieu equation (P = a + & cos 2t)
by Ince (1956). L

From the analogy with a harmonic oscillator we expect that when VP* s
a multiple of T the oscillator sees an excitation (parametric) in phase with its
resonance frequency. This can be thought of as an internal resonance condition.
The exact dependency of P on A scems to play a role to a lesser extent. Magnus
(1966) obtained strong results when considering P(1) = A + Q(t) where Q(t) is
even periodic independent of A. In this case VP goes to VA for X large and the
resonance condition becomes v/A = n T /7. The results of Magnus are not directly
applicable to P;(t) which have a structure:

P(t)io = I o(t) + A An(t). (A2)

The variation of the functions P; ¢(t) depends on the parameter. An(¢) is the same
for the in-plane as the out-of-plane equation. It will be shown that a similar result
remains valid. Assume an even periodic solution of the type:

y(t) = A(1) cos [F(1)] (A3)

where A(t) is even periodic. Substituting Equation A3 and its second derivative in
Equation Al gives: ‘

(A" — AF? 4 AP]cos F —2A'F' + AF"sin F =0, (Ad)

For Equation A3 to be a solution of Equation Al, the coefficients of cos F and
sin #" must vanish. The condition that the coefficicnt of sin F' vanishes gives the
following relation between A and I with €' a conslant:

A=CIVF. (AS5)
Using Equation A5 in the cocficient of cos F' of Equation A4 gives:
1 FH 2 1 FH t
— v _ | 1
pe ey 35 o

Equation A6 is a complicated nonlinear differential equation for F'. It can also be
considered as a representation formula for £. Choosing:

* Average values of X (t) over a period T are denoted X.
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F=pV+ -+

J¢]
AT (A7)

with a, 3, o unknown functions (period T’} the derivatives appearing in Equation A6
can be computed. By collecting the terms according to their power in A, neglecting
higher order terms (A", n > 1) and comparing the result with Equation A2,
relations defining «, 3,  are obtained. Some intermediate results:

F'?2 =20 @' 4 Acp’z—i-[a'z-l-Zzp’ﬂ']%

- 5T 5T IS - 21

-5 S - G 2 -2

Identifying the powers in A with Equation A2 gives:

¢ = An = o(t) = j VA, dt (A8)
0

=5+ G5 -5 5 ~ (A9)

5 _ E:? {a,er % [5:;]’} (A10)

The definition of @ requires A, > 0. The coefficient is the same for the in-plane
and the out-of-planc equation. It is computed by numerical integration. Using the
result for ¢, a can be rewritten:

H {

I 1 A2

f) = dt - — [ By

a(t) 0]2\/,4—n 3 0/ Pp (A1D)

After computing:

T T T

1 i~
@T=/\/Andt aT=] i A
0

0 g
A 32 572
i 2 VA o A

dt (Al12)

and making A large enough to neglect the term in j3:
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Ft+T)=Ft) + or VA + 2L (A13)
v8)

This is a periodic solution to Equation Al provided the change of phase F(t +

T) — F(t} = 2m. The same analysis with an odd periodic function, by choosing

sin F' in Equation A3, would give the same result. This means that the unstable

intervals reduce to points when A increases. The analysis does not indicate if this

happens for a finite A or not. Ullimately, these values will settle on:

2.2 _
27

where the phase shift used is 7 to account for the periodic solutions 27". The corre-
sponding asymptotic separation between the A values that give periodic solutions
is:

A‘/_zgo_T' (A15)

When the result Al4 is used as an estimate for A, the £ does not nccessarily
correspond 1o the true kth interval as the result obtained assumed A large. This
holds in particular for the in-plane periodic function which is not positive for small
values of the separation constant.
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