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Equal-Chord Attitude Determination Method
for Spinning Spacecraft
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The equal-chord method offers a straightforward and low-cost technique for the determination of the spin-axis
attitude using sun and Earth sensor data. The Earth aspect angle follows from the time at which the chord lengths
measured by the Earth sensor’s two pencil beams are equal. An estimation technique is not required, but linear
or quadratic fitting of the sensor data should be performed to remove the random errors. The accuracy of the
attitude solution obtained by the equal-chord method in the presence of the relevant biases is evaluated. The
result is insensitive to uniform biases in the measured chord angles, caused for instance by errors in the Earth’s
infrared horizon. Finally, the application of the method is demonstrated using actual flight data of the CONTOUR
spacecraft.

I. Introduction

S PIN stabilization is an attractive means for providing spacecraft
pointing stability during injection maneuvers performed for in-

stance by means of a solid rocket motor (SRM). This concept is used
when injecting geostationary spacecraft from their transfer orbits
into their planned stationary orbits. The same approach can also be
employed1,2 for the injection of a probe into a deep-space trajectory
as was done in the case of the Comet Nucleus Tour (CONTOUR)
mission in August 2002. Because errors in the resulting trajectory
must be corrected afterwards at the expense of precious onboard
fuel, it is imperative2,3 that the error in the injection attitude should
be as small as possible: typical requirements are in the range from
0.5 to 1.0 deg.

For the purpose of attitude determination, we need knowledge
of the attitude orientation with respect to known inertial reference
directions. In the CONTOUR case the integrated Earth–sun sensor
of Galileo Avionica produces angular measurements of the spin axis
relative to the sun and Earth directions.3,4 The CONTOUR Earth
sensor is equipped with two pencil beams scanning the Earth over
different paths. The crossing times of the Earth’s infrared horizon
during the scans produce two independent chord-angle and sun–
Earth dihedral-angle measurements.

There exists a great deal of literature on the determination of the
attitude pointing of a spinning spacecraft (see Wertz5). The deter-
mination of the spin-axis attitude is usually performed by means of
an estimation technique (e.g., weighted least squares) using a batch
of downlinked sensor measurements. The accuracy of the resulting
attitude solution will be influenced by random as well as system-
atic errors (i.e., biases). The influence of random noise can easily
be removed by employing a sufficiently large set of measurement
data. The adverse effects of biases, however, cannot be mitigated in
a straightforward manner so that the accuracy of the attitude solu-
tion is often tainted by the presence of appreciable (but unknown)
biases.

The present paper describes the so-called equal-chord method,
which performs a spin-axis attitude determination on the basis of
the sensor measurements referred to a single point during the Earth-
sensor coverage interval. This point corresponds to the time at which
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the chord angles measured by the two pencil beams of the Earth
sensor are exactly equal (this occurs when the two chords are sym-
metrical with respect to the Earth’s center). Applicable spacecraft
typically have two (or more) pencil beams, each having its own cov-
erage interval during which the cone formed by its scanning motion
intersects the Earth. The location of the coverage interval within the
orbit is determined by the spin-axis pointing direction and by the
specific mounting orientation of the pencil beam. The existence of
the point of equal chords can be guaranteed if the coverage intervals
of the two pencil beams are partly overlapping along the spacecraft
orbit. This condition is in fact fulfilled by virtually all applicable
spacecraft.

The instantaneous Earth aspect angle (i.e., the angle between
the spin-axis orientation and the spacecraft-Earth direction) follows
immediately from the time of equal chords or can also be derived
from the measured equal-chord angle. The spin-axis pointing direc-
tion is found by a straightforward single-frame geometric attitude-
determination technique based on the sun aspect angle, the Earth
aspect angle, and the sun–Earth dihedral angle at the time of equal
chords.

The implementation of the equal-chord method is very unde-
manding in terms of software requirements and does not need a
priori attitude knowledge. Fagg and van Holtz6 point out that the
method provides an opportunity for in-flight calibration of the Earth
sensor. In fact, the resulting attitude solution is insensitive to uni-
form biases in the chord measurements. As a consequence, uniform
biases in the Earth’s infrared radius have no appreciable influence
on the result delivered by the equal-chord method. This is an attrac-
tive feature in practical spacecraft applications because the precision
of infrared horizon models is inadequate for predicting Earth sen-
sor crossing times as a result of unforeseeable variations caused by
diurnal and local weather effects (Wertz,5 pp. 90–97).

The paper provides a detailed derivation of the measurement
model underlying the equal-chord method. Furthermore, the effects
of the relevant biases encountered in practice (e.g., errors in the
Earth’s infrared radiation profile and sensor mounting misalign-
ments) on the attitude solution are analyzed in full detail. The
application of the method is illustrated using the actual sensor
measurements delivered by the CONTOUR spacecraft in August
2002.

II. Sensor Measurement Characteristics
A. Sensor Operating Principles

The sun sensor produces pulses at the instants when the sun
passes over the meridian and skew slits (Fig. 1a), and these can
readily be transformed into measurements of the sun aspect an-
gle. The Earth sensor has two static pencil beams mounted at an-
gles µi (i = 1, 2) relative to the spacecraft spin axis (CONTOUR
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Fig. 1 Measurement principles for sun sensor and Earth sensor.

Fig. 2 Earth sensor pencil-beam coverage interval (projected view).

has µ1 = 60 and µ2 = 65 deg). The sensor produces measurements
of the space/Earth and Earth/space crossing times of the Earth’s
infrared horizon (Fig. 1b). These crossings determine the half-chord
angles κi (one for each of the pencil beams i = 1, 2). When com-
bining the Earth sensor crossings with the sun sensor’s meridian slit
crossing time, we obtain two measurements αi of the sun–Earth
dihedral angle. This angle is formed (Fig. 1b) when the space-
craft rotates about its Z axis from the meridian containing the
sun vector up to the meridian containing the center of the Earth’s
disk.

The design of the CONTOUR Earth sensor was customized
for the CONTOUR-specific phasing orbits2 with perigee altitudes
near 200 km and apogees of about 115,000 km. The sensor de-
livers its best performance over the altitude range from about
50,000 to 60,000 km, which matches the Earth sensor cover-
age intervals for the nominal CONTOUR SRM injection atti-
tude. The specific CONTOUR pencil-beam settings place the sen-
sor coverage intervals after the apogees of the phasing orbits
(Fig. 2).

B. Earth Sensor Measurements
Figure 3 shows the evolution of the measured half-chord angles κi

(for the two pencil beams i = 1, 2) as a function of the Earth aspect

angle β for the nominal CONTOUR conditions. The half-chord
angles κi satisfy the geometrical measurement equations [Wertz,5

Eqs. (11-7) and (11-8)]:

cos µi cos β + sin µi sin β cos κi = cos ρ(ν) (i = 1, 2) (1)

The half-chord angles in Fig. 3 were generated from Eqs. (1)
using an a priori known spin-axis attitude direction with unit vector
Z. On account of the relation β(ν) = arccos {Z · E(ν)}, the Earth
aspect angle β will be known (during simulations) as a function of
the true anomaly ν and other orbital elements. [Note: the spacecraft-
to-Earth unit-vector E(ν) is defined by −r(ν)/r(ν) and points in the
opposite direction of the orbital position vector r.]

The angle ρ(ν) is the apparent Earth radius angle seen by the
Earth sensor from the instantaneous orbital true anomaly position
ν (Fig. 2). The nominal evolution of ρ(ν) is shown in Fig. 3 and
follows from the knowledge of the orbital elements:

ρ(ν) = arcsin{RE/r(ν)} with r(ν) = �/(1 + e cos ν) (2)

The orbital elements � and e denote the semilatus rectum and the
eccentricity, respectively. The orbital radius r(ν) is usually known
fairly accurately (i.e., the error �r is below 1 km), and so the error
�ρr = −(�r/r) tan ρ remains below 0.001 deg within the coverage
interval and is thus negligible.
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Fig. 3 Half-chord angles and apparent Earth radius vs Earth aspect angle.

The radius RE in Eq. (2) stands for the Earth’s infrared radius
observed by the Earth sensor. The extent of the Earth’s mean infrared
radiance profile (in the CO2 spectral band) reaches to about 40 km
above the Earth’s surface (Wertz,5 pp. 90–97). Because the mean
radius of the solid Earth is about 6367.5 km, it follows that the
mean infrared Earth radius is RE

∼= 6407.5 km. This corresponds to
the “effective” horizon for the Earth sensor, which is designed to
trigger at 50% of the observed peak radiance. The uncertainty in the
triggering altitude is hard to predict, but 5 km (1-σ level) should be
conservative.

It must be kept in mind that each of the two pencil beams can come
across a different Earth radius because of (a priori unknown) tempo-
ral and local variations in the Earth’s infrared profiles at the locations
where the pencil beams have their in- and out-crossings. Another
error source that comes into play is induced by the Earth’s oblate-
ness. The scan paths of the pencil beams can cross the Earth’s rim
at about any location (with different probability densities). For sim-
plicity we assume that errors caused by oblateness can be modeled
by a Gaussian distribution with an uncertainty of 4 km (1-σ level).
The combination of the two (independent) error sources affecting
the sensor triggering altitude amounts to 6.4 km (1σ ). The error in
the apparent Earth radius �ρE

∼= (�RE/r) will be less than 0.01 deg
in the CONTOUR case and about twice as high for geostationary
transfer orbits.

C. Calculation of Earth Aspect Angle
During in-flight operations, the half-chord angles κi (ν) shown

in Fig. 3 represent the fundamental measurements from which the
unknown Earth aspect angle should be determined. Equations (1)
indicate that each of the two chord-angle measurements κi (i = 1,
2) produces its own solution βi . This solution can be written in a
form that shows the explicit dependency of the Earth aspect angle
βi (ν) on the corresponding half-chord measurement κi (ν) at the
time t (ν):

βi (ν) = tan−1{tan µi cos κi (ν)}

± cos−1

{
cos ρ(ν)[

1 − sin2 µi sin2 κi (ν)
] 1

2

}
(i = 1, 2) (3)

This result shows that there is (in general) a two-fold ambiguity
in the calculation of the Earth aspect angle βi from a given half-
chord measurement κi . (This is evident from Fig. 3.) The selection
of the appropriate sign for the solution βi can usually be decided
through a priori knowledge. A single optimal solution β∗(ν) can
be constructed by weighting the individual βi (ν) (i = 1, 2) on the

basis of their individual error covariances (as shown in previous
papers3,7).

The usefulness of the Earth sensor data usually varies signifi-
cantly during the sensor coverage intervals in accordance with the
lengths of the measured chords and the changing geometrical sensi-
tivity conditions. Therefore, the data interval to be processed should
be selected with care. The midlatitude region indicated in Fig. 3 pro-
vides the most valuable chord measurements for both pencil beams
under the CONTOUR conditions.

D. Error Propagation Model
Equations (1) and (3) make use of the ideal apparent Earth radius

ρ(ν), which is independent of the actual attitude and of the sensor
measurements. In practice, however, the actual Earth radii ρi at a
given time and location will likely differ from the expected ideal
value and might also be different for the two pencil beams. Because
the actual values are unknown, operational attitude-determination
algorithms must employ the nominal evolution ρ(ν) of Eq. (2) in
the calculation of the Earth aspect angle βi from the measured half-
chord angles κi . The establishment of a model for the propagation
of the actual errors �ρi in the Earth radii ρi (i = 1, 2) is fairly
intricate. For practical applications we advocate an approach that
models the errors �ρi in terms of their effects on the resulting chord
measurements. Subsequently, the propagation of �κi errors into the
resulting Earth aspect angle βi can be calculated on the basis of the
ideal error-free evolution of ρ(ν).

An error �ρi induces a change �κi in the half-chord-angle mea-
surement κi in accordance with the sensitivity function ∂κi/∂ρi that
follows from Eq. (1):

�κi =
(

∂κi

∂ρi

)
�ρi =

{
sin ρ(ν)

(sin µi sin β sin κi )

}
�ρi (i = 1, 2) (4)

The sensitivity function ∂βi/∂κi can also be found from Eq. (1) and
expresses the variation of the Earth aspect angle βi induced by the
error �κi in the half-chord angles:

�βi =
(

∂βi

∂κi

)
�κi =

{
sin µi sin β sin κi

(sin µi cos β cos κi − cos µi sin β)

}
�κi

(i = 1, 2) (5)

By multiplying the results of Eqs. (4) and (5), we obtain the er-
ror �βi resulting from the error �ρi in the local apparent Earth
radius ρi as propagated by the measured half-chord angle κi . It
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Table 1 Summary of relationships at singularity points (i = 1, 2)

Relationship Inverse relationship CONTOUR values

βi,s(κi,s) = tan−1{tan µi cos κi,s} κi,s(βi,s) = cos−1{tan βi,s/ tan µi } κ1,s = 7.855 deg; κ2,s = 6.293 deg
βi,s(ρi,s) = cos−1{cos µi / cos ρi,s} ρi,s(βi,s) = cos−1{cos µi / cos βi,s} β1,s = 59.766 deg; β2,s = 64.867 deg
ρi,s(κi,s) = sin−1{sin µi sin κi,s} κi,s(ρi,s) = sin−1{sin ρi,s/ sin µi } ρ1,s = 6.797 deg; ρ2,s = 5.702 deg

is obvious that Eq. (5) also describes the propagation of (sensor-
internal) measurement errors �κi that have not been induced by �ρi

errors.

E. Measurement Singularities
The denominator of Eq. (5) vanishes at the singular points (see

Fig. 3) defined by the Earth aspect angle βi,s = βi (νs):

βi,s = tan−1{tan µi cos κi,s} (i = 1, 2) (6)

When checking back with Eq. (3), we find that the singularity cor-
responds to the point in the coverage interval where the Earth aspect
angle has just one solution associated with the measured chord an-
gle. It is also evident from Eq. (3) that the half-chord angle at the
singularity point will be equal to κi,s = sin−1{sin ρi,s/ sin µi } with
ρi,s = ρi (νs) for each of the pencil beams i = 1, 2.

At the singular point, the sensitivity of the Earth aspect-angle
determination to the relevant errors in the chord angle is most unfa-
vorable. In mathematical terms, the singularity amounts to a zero-
measurement-density case and corresponds to the scan near the mid-
dle of the Earth’s disk [see also Wertz,5 p. 386, below Eq. (11-40)].
It should be noted that the points βi,s and κi,s do in general not co-
incide with the location of the maximum chord over the coverage
interval. The increasing apparent Earth radius shifts the actual max-
imum away to a lower value of the Earth aspect angle as can be
observed in Fig. 3.

Figure 3 illustrates that the point of equal chords is far away from
the singularities of the two pencil beams so that the individual mea-
surement characteristics of the two chords are relatively favorable
at this point.

Table 1 summarizes all possible relationships between βi,s , κi,s ,
and ρi,s as well as the nominal values for CONTOUR at the singu-
larity points for the two pencil beams.

III. Equal-Chord Method
A. Summary of Procedure

The equal-chord attitude-determination method uses the angu-
lar measurements referred to just one particular time te (and true
anomaly νe), namely, when the lengths of the chords scanned by
the two pencil beams are precisely equal. The specific instant te at
which the chords become equal is determined by the actual spin-
axis attitude orientation, by the sensor mounting angles, and by the
orbital characteristics. The length of the equal half-chord at time te

will be denoted by κe = κ1(te) = κ2(te).
The core of the method consists of the calculation of the Earth

aspect angle βe from the measured half-chord angle κe or from the
time te at which the chords are equal. The measurements κe and
te should be extracted from the noisy Earth sensor measurements
by processing an interval of telemetry data centered on an a priori
predicted equal-chord time. The measured time of equal chords te

is identified as the instant when the quadratic approximations of the
two arcs of half-chord measurements κi (t) intersect to become κe.
About 1000 data points (i.e., about 17 min of sensor measurements
at 60 rpm spin rate) will be sufficient to reduce the influence of the
random errors to insignificance.

Finally, we employ a single-frame geometric attitude-
determination method on the basis of the sun and Earth aspect-angle
measurements ϑe and βe. For enhancement of the accuracy of the
attitude solution, also the sun–Earth dihedral angle αe at the equal-
chord time should be used. The angles ϑ(t) and α(t) vary much
more slowly than the chord angles so that ϑe and αe can be estab-
lished by a linear fitting procedure centered on the equal-chord time

te. The knowledge of te provides the relevant orbital elements and
the reference sun and Earth vectors that are used in the attitude-
determination procedure.

The operational application of the equal-chord method offers sig-
nificant advantages when compared with other batch attitude esti-
mation methods (e.g., least squares). After the straightforward linear
and quadratic fitting of the raw measurement angles, the equal-chord
method employs only one set of measurement data referred to one
known instant of time te. The attitude solution follows from the in-
version of the single-frame measurement equations involving ϑe, βe,
and αe. The least-squares method, on the other hand, processes the
complete batch of data (typically consisting of about 1000 instants
of sensor data). Each of the data points in the batch has its own set of
measurement equations with different coefficients (because of the
varying Earth position). The attitude estimate is found by means of
the pseudoinverse algorithm (Wertz,5 p. 749) involving the multi-
plication of a number of very large matrices. If a sequential filtering
technique (e.g., Kalman filter) were to be used, the large matrices
will be avoided, but even in this case each of the points in the large
batch of data must be processed individually.

B. Nominal Equal-Chord Model
First, we establish the nominal equal-chord model, which refers

to the ideal situation when measurement biases are absent. The
condition that the chords produced by the two pencil beams are
equal at the time te can be formulated as

κe = κ1(βe, ρe, µ1) = κ2(βe, ρe, µ2) (7)

The Earth aspect angle and the apparent Earth radius angle appearing
here should obviously be interpreted as βe = β(νe) and ρe = ρ(νe)
with νe = ν(te) denoting the true anomaly at the equal-chord time
te.

The objective of the following analysis is to express the Earth
aspect angle βe in terms of the measured half-chord angle κe or in
terms of the known ρe (at the measured equal-chord time te). We
consider the two chord equations in Eq. (1) at the time of equal
chords te and write them in the matrix form:[

cos µ1 sin µ1

cos µ2 sin µ2

](
cos βe

sin βe cos κe

)
=

(
cos ρe

cos ρe

)
(8)

It will be convenient to introduce the sensor mounting matrix [µ]
defined by

[µ] =
[

cos µ1 sin µ1

cos µ2 sin µ2

]
(9)

Its inverse matrix [µ]−1 is given by

[µ]−1 = 1

2

[
cµ + sµ cµ − sµ

fµ − gµ fµ + gµ

]
(10)

with

cµ = cos µ/(cos d), sµ = sin µ/(sin d)

fµ = sin µ/(cos d), gµ = cos µ/(sin d) (11)

The parameter µ = 1
2 (µ2 + µ1) denotes the mean value of the two

pencil-beam mounting angles, and d = 1
2 (µ2 − µ1) represents half
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Table 2 Summary of relationships at instant of equal chords

Relationship Inverse relationship CONTOUR values

βe(κe) = tan−1{tan µ/ cos κe} κe(βe) = cos−1{tan µ/ tan βe} κe ∼= 6.339 deg
βe(ρe) = cos−1{cµ cos ρe} ρe(βe) = cos−1{cos βe/cµ} βe ∼= 62.644 deg
ρe(κe) = cos−1{cos[βe(κe)]/cµ} κe(ρe) = cos−1{tan µ/ tan[βe(ρe)]} ρe ∼= 6.156 deg

of the difference between these angles. With the help of these defi-
nitions, we can invert Eq. (8):(

cos βe

sin βe cos κe

)
= [µ]−1

(
cos ρe

cos ρe

)
= cos ρe

(
cµ

fµ

)
(12)

The two rows of Eq. (12) produce the following explicit results for
βe(ρe) and κe(ρe):

βe(ρe) = cos−1{cµ cos ρe}, κe(ρe) = cos−1

{
tan µ

tan[βe(ρe)]

}
(13)

These results express βe and κe in terms of the known apparent Earth
radius ρe at the time te.

Another important result is obtained by forming the quotient of
the second and first rows of Eq. (12):

tan βe cos κe = fµ/cµ = tan µ → βe(κe) = tan−1{tan µ/ cos κe}
(14)

The latter result provides βe explicitly in terms of the measured
κe angle. The relatively small value of κe (see Fig. 3) justifies the
expansion of cos κe in Eq. (14):

βe(κe) ∼= µ + 1
4 κ2

e sin(2µ) + O
(
κ4

e

)
(15)

This expression illustrates that the Earth aspect angle at the time
of equal chords will be close to the mean value of the sen-
sor mounting angles. Figure 3 shows that κe

∼= 6.34 deg for the
CONTOUR design parameters (with µ = 62.5 deg), and so we find
βe

∼= µ + 0.144 deg = 62.644 deg with an approximation error that
is negligible when compared with the exact result of Eq. (14).

C. Interpretation of Equal-Chord Solution
The results in Eqs. (14) and (15) constitute the measurement

equation for the calculation of the Earth aspect angle βe from the
measured equal-chord angle κe = κ(te). An attractive feature of this
approach is the fact that the sensitivity of βe to errors in κe is practi-
cally negligible (e.g., ∂βe/∂κe = 0.045 in the case of CONTOUR).
Therefore, bias errors in the measurement of the equal half-chord
angle will have little effect on the resulting value of βe. This result is
in strong contrast with the sensitivity functions ∂βi/∂κi of the two
individual pencil beams with respective values of −1.75 and 2.30 at
the time of equal chords. For completeness sake it should be noted,
however, that the low sensitivity of βe to errors in the measured κe

angle by itself does not also imply a low attitude error. The biases
can induce a shift in the time of equal chords so the Earth vector
that forms the inertial reference for the attitude solution can change
as well.

The first result in Eq. (13) offers an attractive alternative approach
to the baseline equal-chord procedure just outlined. After the equal-
chord time te has been extracted from the two sets of half-chord
measurements κi (t) for i = 1, 2, we can calculate the apparent Earth
radius ρe = ρ(νe) from the available orbit information by means of
Eq. (2). The expression for βe(ρe) in Eq. (13) provides now imme-
diately the Earth aspect angle βe. (Note: The measured equal-chord
angle κe will not be used at all in this approach.) The relevant error
sensitivity ∂βe/∂ρe (i.e., 0.056 in the CONTOUR case) is similar in
magnitude to that of ∂βe/∂κe just given so that the approach based
on ρe appears to be equivalent (in both practicality and error sen-
sitivity) to the baseline equal-chord procedure using the measured
κe.

D. Summary of Formulas
The equality condition for the two half-chord angles κi (i = 1, 2)

in Eq. (7) leads to two equations for the three variables κe, βe, ρe

with ρe = ρ(te), a known function of te. Table 2 summarizes the six
possible relationships between any two of these three variables as
well as the specific CONTOUR equal-chord values. βe lies close to
midway between the singular points of the two chords (see Fig. 3
and Table 1), which demonstrates the favorable measurement char-
acteristics of the equal-chord method.

E. Geometric Attitude Determination
The geometric attitude-determination procedure employs the

Earth aspect angle βe, the sun aspect angle ϑe, and (optionally)
the sun–Earth dihedral angle αe at the time of equal chords3:

Z · Se = cos ϑe, Z · Ee = cos βe

Z · (Se × Ee) = sin ϑe sin βe sin αe (16)

The angle αe represents the mean value of the measurements αi (te)
obtained (after linear fits) from the individual pencil beams i = 1, 2.
As long as the sun and Earth vectors Se and Ee at the time te are not
collinear, Eqs. (16) produce a unique attitude vector Z (Shuster8). In
geometrical terms, the first two equations produce two attitude solu-
tions that correspond to the intersections of the two cones centered
on the sun and Earth vectors Se and Ee (with half-cone angles ϑe and
βe, respectively). The two-fold ambiguity in the attitude solution can
be resolved by employing also the measurement αe. Although the
use of the αe angle would typically enhance the accuracy of the re-
sulting attitude solution, this can also introduce additional unknown
bias effects.

The equal-chord method does not formally require an a priori
attitude estimate, but some knowledge of the expected equal-chord
time is needed for selecting the interval of telemetry data that should
be processed. If this information is not available, we can find a rough
estimate of te by visual inspection of a chart showing the downlinked
chord measurements.

IV. Effects of Measurement Biases
A. New Equal-Chord Condition

The ideal equal-chord model just presented does not account for
any bias errors that might affect the chord measurements. As men-
tioned already, the actual Earth radii for the two pencil beams can
differ because of local and temporal variations in the Earth’s in-
frared radiance profile. Also there might be sensor-internal errors
caused (for instance) by limitations in the precision of the sensor
calibration parameters. These biases introduce offsets �κi (i = 1, 2)
in the measured half-chord angles, which can affect the resulting
equal-chord measurement κe as well as the time of equal chords
te. As a consequence, the Earth aspect angle found by the equal-
cord calculations can differ from the ideal nominal result already
established.

When accounting for the biases of the half-chord angles, we can
rewrite the equal-chord condition in Eq. (7) in the form

κe,new = κ1(βe,new, ρe,new, µ1) + �κ1 = κ2(βe,new, ρe,new, µ2) + �κ2

(17)

The new equal half-chord angle κe,new will in general be different
from the ideal κe because of the bias offsets �κi (i = 1, 2) in the
equal-chord data. Because the biases are assumed “small,” the re-
sulting shift �κe in the equal-chord angle κe,new relative to κe can
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Fig. 4 Illustration of bias effects on equal-chord condition.

also be considered small, and the equal-chord condition (17) can be
expressed as

κe,new = κi (βe,new, ρe,new, µi ) + �κi = κe + �κe (i = 1, 2)

(18)

Furthermore, the new angular variables ρe,new and βe,new will also
be close to their respective nominal equal-chord values ρe and βe:

ρe,new = ρe + �ρe, βe,new = βe + �βe (19)

with small changes �ρe and �βe.
In practical applications we have no advance knowledge on the

presence and magnitude of the biases. Therefore, the calculation of
βe,new from the equal-chord angle κe,new or from the Earth radius
ρe,new at the new equal-chord time te,new will be performed as in the
nominal case described by Eqs. (13) and (14):

βe,new(ρe,new) = cos−1{cµ cos ρe,new}

βe,new(κe,new) = tan−1

{
tan µ

cos κe,new

}
(20)

After substituting the expressions from Eqs. (18) and (19) into
Eq. (20) and performing expansions for small deviations from the
nominal equal-chord solution, we find the variations in the resulting
Earth aspect-angle solutions:

�βe
∼= {tan ρe/ tan βe}�ρe, �βe

∼= 1
2 {sin(2βe) tan κe}�κe (21)

For the nominal CONTOUR parameters given in Table 2, we re-
trieve the favorable error sensitivity results (i.e., �βe

∼= 0.056�ρe

and �βe
∼= 0.045�κe) that were already mentioned.

B. Changes in Equal-Chord Measurements
Next, we seek to establish explicit expressions for the changes

�ρe and �κe in the fundamental equal-chord measurements ρe and
κe in terms of the biases �κi (i = 1, 2). It may be recalled that �ρe

is related to �te by means of �ρe
∼= ρ̇e�te with known ρ̇e so that

we can use te and �te instead of ρe and �ρe.
Because the biases are small, the difference �te = te,new − te be-

tween the new and the nominal equal-chord times can also be con-
sidered small. Therefore, it is meaningful to use the linear approxi-
mations of the individual half-chords κi (t) near the nominal equal-
chord value κe:

κ1(te,new) ∼= κe + κ̇1,e�te, κ2(te,new) ∼= κe + κ̇2,e�te (22)

The subscript e specifies that the partial derivatives are evaluated at
the nominal equal-chord time te. The time derivatives of the chord
angles κi (t) in Eqs. (17) and (18) can be expressed as

κ̇i,e =
(

∂κi

∂β

)
e

β̇e +
(

∂κi

∂ρ

)
e

ρ̇e (i = 1, 2) (23)

The calculation of the partials (∂κi/∂β)e and (∂κi/∂ρ)e is relatively
straightforward and the results are similar to those in Eqs. (4) and
(5). During simulations, the attitude will be known so that we can
evaluate the derivative β̇e at the time te. Therefore, κ̇i,e in Eq. (23)
can be calculated explicitly, and the changes di in the individual
chords over the interval of time �te (see Fig. 4) are found to be

di = κi (te,new) − κe
∼= κ̇i,e�te (i = 1, 2) (24)

The new equal-chord conditions given in Eq. (18) can be reformu-
lated as

di + �κi = �κe →
[

1 −κ̇1,e

1 −κ̇2,e

](
�κe

�te

)
=

(
�κ1

�κ2

)
(25)

After inversion we find the explicit results for �κe and �te in terms
of the biases �κi (i = 1, 2):(

�κe

�te

)
= {κ̇2,e − κ̇1,e}−1

[
κ̇2,e −κ̇1,e

1 −1

](
�κ1

�κ2

)
(26)

C. Discussion of Results
Figure 4 illustrates the shift �te in the time of equal chords

and the change �κe in the equal half-chord angle for an ex-
ample with selected biases �κ1 = 0.03 deg and �κ2 = 0.10 deg.
Relations (24) produce the individual changes d1 = 0.0573 deg
and d2 = −0.0127 deg in the new equal chord κe,new with re-
spect to the original equal-chord angle κe. The shifts in the
equal-chord measurements follow from Eqs. (26): �te = 0.0169 h
(or �ρe = 0.0146 deg) and �κe = 0.0873 deg. With the help of
Eqs. (21), we find the changes in the Earth aspect angle produced
by each of the two equal-chord approaches: �βe(�ρe) ∼= 0.0008 deg
and �βe(�κe) ∼= 0.0040 deg. The difference between the two results
is caused by the characteristics of the biases in terms of their effects
on either κe or ρe. The change in the resulting Earth aspect angle is
relatively small in comparison to the magnitude of the biases, which
confirms the low error sensitivity of the equal-chord method.

Table 3 presents the results of simulations based on the
CONTOUR conditions. The last two columns provide the changes
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Table 3 Effects of measurement biases on resulting attitude solution

Changes in equal-chord parameters Change in attitude

Input biases �te , h �κe , deg �βe(�ρe), deg �βe(�κe), deg (�ρe), deg (�κe), deg

Identical: �κ1 = �κ2 = 0.1 deg 0 0.1 0 0.00457
¯

0 0.0033
Opposite: �κ1 = −�κ2 = 0.1 deg −0.04810 −0.06892 −0.00229

¯
−0.00311

¯
0.1423 0.1429

Chord # 1 only: �κ1 = 0.1 deg; �κ2 = 0 −0.02409 0.01649 −0.00116 0.00075 0.0715 0.0701
Chord # 2 only: �κ1 = 0; �κ2 = 0.1 deg −0.02415 0.08155 0.00117 0.00372

¯
0.0720 0.0738

Uniform RE : �ρ1 = �ρ2 = 0.1 deg −0.00135 0.12164 −0.00007 0.00557
¯

0.0040 0
Opposite RE : �ρ1 = −�ρ2 = 0.1 deg −0.05933 −0.08338 −0.00282

¯
−0.00376

¯
0.1754 0.1761

a) b)

Fig. 5 Geometry of chords near point of equal chords under ∆ρ biases.

in the attitude solutions caused by the biases as predicted by each
of the two equal-chord approaches. In the first row of Table 3, both
biases are equal to +0.1 deg, and so there will be no shift in the time
of equal chords (because κe + �κ1 equals κe + �κ2 at te), which is
correctly predicted by the second row of Eq. (26). The first formula
in Eq. (21), which is based on �ρe, predicts that there will also be no
change in the resulting �βe. The second formula, on the other hand,
uses �κe and finds �βe = 0.00453 deg, which corresponds to the
result of the simulations in Table 3, that is, �βe = 0.00457 deg. [The
underlined digits in Table 3 represent the deviations of the analyti-
cal predictions in Eq. (21) relative to the simulated results]. In fact,
the changes in the resulting attitude solutions are so small that the
differences between the two methods have no practical relevance.

The second row in Table 3 uses biases of equal magnitudes
(0.1 deg) but of opposite signs. This leads to a relatively large shift
in the time of equal chords and a similarly large change in the result-
ing attitude solutions. The changes in the Earth aspect angle remain
small, but the Earth reference direction will shift under the biases.
The third and fourth rows provide the results for the individual bias
errors on their own. The attitude errors in these cases are all of a
similar magnitude and are about half as large as those in the second
row. The attitude solutions in Table 3 were established by a geo-
metric method, which includes the use of a “perfect” (i.e., without
biases) sun–Earth dihedral-angle measurement αe. If only the ϑe

and βe measurements were to be used, the changes in the attitude
would be about 2.3 times as large in all cases shown here.

The final two rows in Table 3 summarize the effects of biases
in the individual Earth radii. The propagation of a given bias �ρi

into the chord measurement �κi (for any of the two chords i = 1, 2)
at the time of equal chords can be established by means of the rele-
vant partial derivative. Figure 5a shows that the equal-chord time is
practically insensitive to uniform biases in the Earth radii. (The time
of equal chords does shift slightly because the effects of the equal

�ρi biases on the two chords are not exactly equal.) In the case
when the biases have opposite signs (Fig. 5b), there is a relatively
large shift in the equal-chord time and also in the resulting attitude
solutions.

In conclusion, we find that the worst-case magnitude of the at-
titude error is roughly equal to the root-sum-squared value of the
individual biases in the two half-chord measurements. Both variants
of the equal-chord method exhibit similar performances in terms of
the resulting attitude errors. The approach using κe is perfectly in-
sensitive to uniform biases in the Earth radii, whereas the approach
using ρe is insensitive to uniform biases in the chord measurements.
In the absence of a priori knowledge on the actual biases, we cannot
express a meaningful preference for either of the two approaches.

V. Effects of Sensor Directional Biases
Another important error source affecting the attitude solution is

caused by biases in the pointing directions of the Earth sensor pencil
beams with respect to the actual in-flight spacecraft spin axis. These
pointing errors are mainly caused by “dynamic imbalance,” which
refers to the offset between the dynamical spin axis (along the axis
of major or minor moment of inertia) and the designed spin axis,
which is along the spacecraft geometrical centerline. In practice,
we must account for uncertainty in the knowledge of the in-flight
inertias caused by limitations in the precision of the balancing and
by asymmetric fuel depletion. Furthermore, sensor mounting and
internal misalignments can contribute (to a lesser degree) to the
directional pointing bias.

We write µi,act for the actual (but unknown) mounting angles of
the pencil beams relative to the actual in-flight spin axis, and we
assume that the directional biases �µi (i = 1, 2) are small:

µ1,act = µ1 + �µ1, µ2,act = µ2 + �µ2 (27)



1004 VAN DER HA

The effects of the small biases �µi on the attitude solution can be
considered independent of those induced by the half-chord measure-
ment biases just presented. Therefore, their respective contributions
can be added in a first-order analysis, and it is meaningful to study
the effects of the mounting biases in isolation here. The equal-chord
condition under the actual mounting angles is formally identical to
Eq. (7) but contains different “new” equal-chord parameters:

κe,new = κ1(βe,new, ρe,new, µ1,act) = κ2(βe,new, ρe,new, µ2,act) (28)

After substituting the expressions of Eqs. (27) and expanding for
small mounting biases �µi , we find first-order approximate ex-
pressions, which are identical in form to Eqs. (17):

κe,new
∼= κ1(βe,new, ρe,new, µ1) + �κ1

∼= κ2(βe,new, ρe,new, µ2) + �κ2

(29)

The expansion leading to Eq. (29) has transformed the directional
biases �µi into their corresponding biases in the individual chords
�κi at the time of equal chords:

�κi =
(

∂κi

∂µi

)
e

�µi

with

(
∂κi

∂µi

)
e

= 1

(tan µi tan κe)
− 1

(tan βe sin κe)
(30)

In the nominal CONTOUR case, the partials will be approximately
±0.5 for the pencil beams 1 and 2, respectively.

At this stage we can reuse the model that was developed in
Eqs. (17–26) to describe the effects of the measurement biases �κi ,
that is,

κe,new = κe + �κe, ρe,new = ρe + �ρe

βe,new = βe + �βe (31)

The change in Earth aspect angle �βe can be expressed in terms
of �ρe or �κe as in Eqs. (21). Of particular interest is the result of
Eq. (26), which expresses the changes in the equal-chord parameters
�κe and �te that are induced by the directional biases �µi [via
Eqs. (30)]:

�κe
∼= 0.0901�µ1 − 0.4024�µ2 (deg)

�te
∼= −0.1250�µ1 − 0.1194�µ2 (h) (32)

Table 4 Effects of mounting misalignments on resulting attitude solution

Changes in equal-chord parameters Change in attitude

Input biases �te , h �κe , deg �βe(�ρe), deg �βe(�κe), deg (�ρe), deg (�κe), deg

Identical: �µ1 = �µ2 = 0.1 deg −0.02420 −0.03132 −0.00116 −0.00142
¯

0.0718 0.0720
Opposite: �µ1 = −�µ2 = 0.1 deg −0.00054 0.04807 −0.00003 0.00219

¯
0.0016 0

Pencil beam # 1: �µ1 = 0.1 deg; �µ2 = 0 −0.01235 0.00869 −0.00059 0.00039 0.0367 0.0360
Pencil beam # 2: �µ1 = 0; �µ2 = 0.1 deg −0.01180 −0.04064 −0.00057 −0.00184

¯
0.0350 0.0360

Table 5 Summary of results and residuals (in degrees) of equal-chord method

beta

Date kappa res (kap) rho res (rho) (rho) (kap) res (beta) alpha res (alpha) theta res (theta) Goodness

15 Aug. 6.042 −0.175 6.086 0.018 62.864 62.856 −0.008 35.157 −0.072 103.043 −0.017 0.092
13 Aug. 6.129 −0.139 6.117 0.008 62.866 62.860 −0.006 36.662 −0.072 104.015 −0.025 0.092
11 Aug. 6.193 −0.085 6.133 0.015 62.867 62.862 −0.004 38.088 −0.063 104.946 −0.024 0.083
10 Aug. 6.126 −0.170 6.135 0.003 62.867 62.859 −0.007 39.539 −0.093 105.907 −0.014 0.087
8 Aug. 4.530 −0.006 4.734 −0.011 62.799 62.799 0.000 38.409 0.071 102.597 0.000 0.020
6 Aug. 4.620 0.054 4.771 0.004 62.800 62.802 0.002 39.520 −0.223 103.717 −0.042 0.214
Average —— −0.087 —— −0.003 —— —— −0.004 —— −0.075 —— −0.020 0.117
Standard deviation —— 0.094 —— 0.010 —— —— 0.004 —— 0.093 —— 0.014 0.063

Table 4 summarizes the simulation results for the CONTOUR con-
ditions. The first row shows that identical biases lead to an attitude
change of a magnitude that is about half of the root-sum-squared
value of the individual biases. The second row shows that biases
with opposite signs lead to almost no change in the equal-chord
time and have a negligible effect on the attitude solution. The atti-
tude changes in the third and fourth rows are all of a similar mag-
nitude and about half as large as those in the first row. If the geo-
metric attitude determination were performed without the (perfect)
measurements αe, the attitude errors would be about 2.3 times as
large.

VI. CONTOUR Flight Results
The equal-chord method was used3 for the attitude determination

of CONTOUR in its spinning mode before the SRM firing on 15
August 2002. Table 5 shows the results for the attitude angles pro-
duced by the equal-chord method and the associated measurement
residuals for the final six sensor coverage intervals. The “residuals”
are the deviations between the actual equal-chord measurements
and their predictions derived from simulations with the attitude so-
lution produced by the method. We find that they are typically below
0.1 deg.

The beta column provides the results of both the baseline method
(using the half-chord measurement κe) and the alternative approach
(based on ρe). The differences between the two results are below
0.01 deg in all cases and as small as 0.004 deg in average. This
indicates that the results of the two equal-chord approaches are
very consistent. However, this does not necessarily imply that the
resulting attitude error result will be low (because of unknown bias
effects). The “goodness” column refers to the difference between the
attitude determined from the sun and Earth angles ϑe and βe and the
solution that employs the dihedral angle αe measurement in addition.
The goodness angle reflects on the inherent consistency between the
various measurement angles and can provide some indication on
the presence of biases. Although the actual attitude direction is not
known to sufficient precision to perform a persuasive comparison,
we can conclude that the equal-chord method is capable of achieving
an attitude-determination accuracy that is comparable to that of a
more elaborate least-squares method (see also the results in Fig. 13
of Ref. 3).

Figure 6 illustrates the application of the quadratic approxima-
tions of the two sets of half-chord angles around the time of equal
chords for CONTOUR’s Earth sensor data of 13 August 2002. The
evolution of the residuals can be visualized as the discrepancy be-
tween the actual and predicted measurements.
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Fig. 6 Measured and predicted half-chord-length angles (13 Aug. 2002).

VII. Conclusions
We have presented a detailed outline of the principle and the

operating procedure of the equal-chord method for spin-axis at-
titude determination. The method provides an attitude solution
by using angular measurements referred to one single point dur-
ing the Earth sensor coverage interval. This point corresponds to
the instant when the chord lengths produced by the two pencil
beams are equal and is determined by processing a set of about
1000 data points. The effects induced by the random noise in the
sensor measurements can simply be removed by applying a lin-
ear (for the sun aspect and the sun–Earth dihedral angles) and
a quadratic (for the chord angles) fitting procedure. The method
does not require a priori attitude knowledge, but a rough idea of
the time of equal chords is needed to identify the interval of data
for processing. We demonstrate that the resulting attitude solu-
tion is practically insensitive to uniform biases in the measured
chord lengths at the time of equal chords. These biases can be in-
duced for instance by local variations in the radiance profile of
the Earth’s infrared radius. Furthermore, the influence of sensor
directional biases on the attitude solution produced by the equal-
chord method has been analyzed. The results demonstrate that
the equal-chord method offers an efficient, robust, straightforward,
and low-cost alternative to the more traditional attitude estimation
methods.
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