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Solar radiation pressure effects have been exploited by satellites for about four decades. Concepts have been

developed for using solar radiation forces and torques in practical applications, for instance, for orbit stationkeeping

and attitude stabilization of geostationary communications satellites. The forces and torques induced by solar

radiation pressure can substantially alter the orbital and attitude behavior of spacecraft, especially in long-duration

missions. The present work analyzes the long-term effect of the solar radiation torques on the evolution of the spin-

axis attitude pointing of any type of spacecraft (e.g., Earth-orbiting spacecraft, deep space probes, and solar sails).

Analyticmodels are presented that can be applied to a spacecraft of an arbitrary geometrical shape. Compact results

are established that predict the annual drift of the spacecraft spin axis under solar radiation torques. The models

presented will be useful for the design of spacecraft attitude control systems as well as for space mission planning,

including hibernation concepts.

Nomenclature

A = area of spacecraft surface element under
consideration, m2

C = constant
cm, cp = center of mass, center of pressure

cmak, s
m
ak = Fourier coefficients

c0 = cosine of ���d0�
d = time, days
d� = epoch of the vernal equinox

F = solar radiation force

fa, fd, fs = absorptive, diffuse, and specular parts of the
solar radiation force

fak, fdk, fsk = functions
f1, f2 = force terms
g = threshold
g1, g2 = torque terms
h = height of the spacecraft, m
Iz = moment of inertia about the spin axis, kgm2

n = unit-vector normal to the surface element
nx, ny, nz = components of n along the spacecraft axes
P = solar radiation force parameter, pA=R2, N
p = solar radiation pressure, p� 4:56 � 10�6, N=m2

Q = angular rate
R = distance from the spacecraft to the sun, AU
r = length of the lever arm of the solar radiation

pressure torque
r = lever-arm vector of the solar radiation pressure

torque
rcyl = radius of the cylindrical spacecraft
rx, ry, rz = components of r along the spacecraft axes

s = sun unit vector (from the spacecraft to the sun)
s0 = sine of ���d0�
s1, s2, s3 = components of s along the inertial X, Y, and Z

axes
T = solar radiation torque magnitude
T = solar radiation torque vector
t = time, s
ta, td, ts = absorptive, diffuse, and specular parts of solar

radiation torque
W = modified angular rate,W �Q sin �ave=!�
w = precession rate, rad=s
w = precession vector
X, Y, Z = Earth-centered inertial reference frame
x, y, z = unit vectors along the x, y, and z axes
x, y, z = spacecraft body reference frame with z as the

spin axis
xs, ys, zs = sun-spin-axis reference frame
xs, ys, zs = unit vectors along the xs, ys, and zs axes
z = unit vector along the spin axis
z0 = initial value of the spin-axis direction
z1, z2, z3 = inertial components of spin-axis direction z
z10, z20, z30 = inertial components of the initial spin-axis

direction
�, � = right ascension and declination of the spin axis

in the inertial frame
� = solar aspect angle
�ave = averaged solar aspect angle over a year
� = infinitesimal change
�t = spin period (considered infinitesimal)
" = misalignment angle
"� = ecliptic obliquity
# = precession angle
�� = sun’s ecliptic longitude
�, � = right ascension and declination of normal n in

the spacecraft frame
�, �, 	 = components of the spin axis along the ecliptic

frame

 = specular reflectivity coefficient
� = diffuse reflectivity coefficient
’ = constant
�, 
 = right ascension and declination of the lever arm

in the spacecraft frame
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 = spin-phase angle
~ ,  ̂ = modified spin-phase angles,  � � and  � 
,

respectively
! = spacecraft spin rate, rad=s
!� = sun’s mean angular rate, deg =day

Subscripts

a = absorptive component
ave = averaged value over a year
d = diffuse component
i = index of the surface element
max = maximum value over a year
s = specular component
x, y, z = components along the spacecraft axes
0 = initial condition
1, 2 = start and end of the averaging interval

Superscripts

	 = differentiation with respect to time, s
0 = differentiation with respect to time, days

I. Introduction

S OLAR radiation pressure (SRP) effects on satellites have been
studied extensively during the last 45 years [1–5]. Spacecraft

attitude and orbit control systems must compensate for the SRP
disturbances throughout the mission lifetime. On the other hand,
SRP effects can also be exploited for specific attitude and orbit
control objectives. In any case, a good understanding and accurate
prediction of the SRP effects is important during the mission design
and can lead to reductions in the required onboard propellant.

The concept of using SRP torques for attitude stabilization was
first raised in 1959 by Sohn [1]. The technique has successfully been
implemented in a variety of space missions, but especially in
geostationary communications satellites. For instance, OTS, INSAT,
TELECOM 1, and INMARSAT 2 make use of the windmill torques
induced by SRP to perform roll/yaw attitude stabilization [2–4]. The
orientation of the north and south solar arrays can be rotated
differentially (about the pitch axis) with respect to the nominal sun-
pointing orientation. In this manner, disturbance torques about the
roll and yaw axes can be countered without expenditure of onboard
propellant. Wie [3,4] presented the dynamics and control of solar
sails under SRP effects, showing that the offset between the center of
mass and center of pressure can cause attitude control and stability
problems. With regard to orbital effects caused by SRP, van der Ha
and Modi [5] provided a model for predicting the effects on space
structures of arbitrary geometrical shape.

Patterson and Kissel [6] examined the effects of SRP on the
PAGEOS balloon spacecraft and observed a highly variable rotation
rate and a precession of its spin axis. They used an ellipsoidal model
to explain these variations. Pande [7] considered the possibility of
using SRP to develop a controller to rotate the spin axis of a
spacecraft using two solar panels along its spin axis. The controller
was shown to be able to rotate the spin axis of a medium-sized
spacecraft from the orbit normal attitude to the in-orbit plane
orientation (i.e., a 90-deg rotation angle) in about four days. Parvez
[8] examined the SRP disturbance on the GSTAR and SPACENET
spacecraft and estimated the SRP torque at different times of the year
using the in-orbit performance of themomentumwheels and the duty
cycle of the magnetic torquers. Their results have been used in
preparing stationkeeping maneuvers and also in the validation of
SRPmodels used in the design of the attitude control system. Ziebart
[9] provided a detailed analytic formulation for SRP modeling of
spacecraft with complex shapes. Rios-Reyes and Scheeres [10]
presented a generalized methodology for the analytic description of
the forces and moments generated by a solar sail of arbitrary shape
and optical properties.

The model presented in this paper offers predictions of the long-
term drift of the spin axis of a spin-stabilized spacecraft under the

influence of SRP torques. Analytic expressions for the SRP force and
torque effects are found by summing the various spacecraft surface
areas, each with its own reflective properties and its position and
orientation relative to the spin axis. The long-term evolution of the
spin-axis-pointing direction is established by means of an averaging
operation over the spin revolution. This leads to practical compact
models that can predict the evolution of the attitude drift of an
arbitrary spacecraft configuration under SRP torques.A fewpractical
applications with primary relevance for the attitude pointing of deep
space probes during their hibernation periods are presented for
illustration.

II. Spacecraft and Sun Geometry

Figure 1 shows the orientation of the instantaneous spacecraft
reference frame (x, y, z) within the Earth-centered inertial reference
frame (X,Y,Z). The spacecraft x and y axes rotate rapidly about the z
axis under the spacecraft spin rate, which is typicallywithin the range
from a few rpm up to perhaps 120 rpm. The spacecraft spin axis (i.e.,
the z axis), on the other hand, moves very slowly in inertial space
under the action of external torques.

The instantaneous orientation of the spacecraft spin axis in the
inertial geocentric reference frame (X, Y, Z) is described by the unit
vector z� �z1; z2; z3�T with

z1 � cos� cos �; z2 � sin� cos �; z3 � sin � (1)

The instantaneous sun position within the inertial frame (Fig. 1) is
defined by the unit vector s with components s� �s1; s2; s3�T . The
evolution of the sun unit vector in the geocentric equatorial frame can
be described by the analytical model presented by Vallado [11]:

s1 � cos��; s2 � sin�� cos "�; s3 � sin�� sin "� (2)

The sun’s ecliptic longitude �� and the ecliptic obliquity "� are
given by the approximate expressions (with acceptable accuracy for
the long-term applications to be considered here):

�� � !��d � d� �; "� � 23:439 deg (3)

Time is expressed in terms of days relative to the epoch of the vernal
equinox. The sun’s mean angular rate of !� � 0:9856 deg =day in
the inertial geocentric frame is extremely small compared with the
spin rate !.

Figure 2 shows the geometry of the sun vector relative to the
spacecraft spin axis, which is characterized by the instantaneous
solar aspect angle �. The instantaneous sun-spin-axis plane is defined
by the unit vectors s and z toward the sun and along the spin axis,
respectively. This plane contains the xs and zs coordinate axes, and
the latter axis is pointing along the spin axis (Fig. 2). The unit vectors
xs and ys follow from the geometry in Fig. 2 and can be expressed in
the known unit vectors s and z:

xs � �s � cos � z�= sin �; ys � z � xs (4)

Fig. 1 Geometry of the spacecraft frame and sun motion in inertial

space.
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Thus, the ys axis points normal to the instantaneous sun-spin-axis
plane.

It should be noted that the (xs, ys, zs) sun-spin-axis frame is not
strictly inertial, because it is defined by the sun vector and the spin
axis, both of which are slowly varying in time. Nevertheless, during
the relatively short duration of one spacecraft revolution, we may
consider this frame to be quasi inertial or frozen. For illustration,
typical spin rates of operational satellites are in the range from 5 to
120 rpm, and so one revolutionwould take between 0.5 and 12 s. This
is very fast compared with the slow changes in the spacecraft attitude
orientation and in the sun vector’s inertial position. The slow
variation of the sun-spin-axis plane provides the justification for
eliminating the fast spin motion from the long-term effects by means
of spin-averaging of the solar radiation forces and torques.

When using the definitions in Eqs. (1) and (2), we can write the
solar aspect angle as

� � arccos�z 	 s� � arccosfC cos��� � ’�g (5)

with

C�
n
z21 � 
z2 cos "� � z3 sin "��2

o
1=2

’� tan�1f
z2 cos "� � z3 sin "��=z1g
(6)

Two specific attitude orientations are of particular interest:
namely, those defined by the vectors z� and z�:

z� � �0;� sin "�; cos "��T ; z� � �z� (7)

Equation (6) shows that the amplitude C vanishes and the angle ’ is
ill-defined for both of these vectors. From Eq. (5), we find that the
solar aspect angle is ��=� � 90 degwhile these vectors are pointing
north and south to the ecliptic plane. These specific attitude
orientations are of considerable practical interest for hibernating
deep space probes during their long cruise phases in a near-ecliptic
trajectory. They offer favorable operational conditions, because the
solar aspect angle may be maintained close to 90 deg throughout the
hibernation phase without any active control [12].

For the spinning satellite applications considered here, the
spacecraft frame (x, y, z) rotates about the z� zs axis, which is
assumed to remain fixed during one spin period. The transformation
between the spacecraft (x, y) axes and the quasi-inertial (xs; zs) axes
(Fig. 2) can be expressed in terms of the spin-phase angle
 �t� � !�t� ts�, with ! denoting the spin rate and ts denoting the
instant at which the spacecraft x axis crosses the sun-spin-axis plane:

�
x

y

�
� cos �t� sin �t�
� sin �t� cos �t�

� ��
xs
ys

�
(8)

III. Solar Radiation Force Model

A. General Force Model

For many space missions, the solar radiation effect represents the
dominant environmental force. The solar radiation pressure acting on
a flat-surface area A induces a force F that can be written [3–5,13] in
components along the unit vectors s and n:

F ��P�n 	 s�f�1 � 
�s� 
� � 2
�n 	 s��ng if �n 	 s�> 0

(9a)

F � 0 if �n 	 s� � 0 (9b)

When studying the effects of solar radiation pressure, we may
replace an arbitrary satellite body by a number of flat-surface
elements Ai �i� 1; 2; . . . ; �, each with its own normal ni, its own
(homogeneous) material properties 
i and �i, and its resulting solar
radiation force Fi. The total solar radiation force on the satellite
equals the sum of the individual forces F��i (Fi), where each of
the Fi is given by the force expression of Eq. (9a) with the specific
parameters for the surface Ai.

B. Force in the Sun-Spin-Axis Frame

The force expression in Eq. (9a) can be reformulated in a more
opportune form:

F ��Pf�1 � 
�fa � �fd � 2
fsg if �n 	 s�> 0 (10)

The vectors fa, fd, and fs refer to the absorptive, diffuse, and
specular contributions to the solar radiation force:

f a � �n 	 s�s; fd � �n 	 s�n; fs � �n 	 s�2n (11)

In the presentmodel, the solar radiation forcewill be formulated in
components along the quasi-inertial sun-spin-axis reference frame.
Therefore, the normaln to the surface elementAmust be transformed
to this frame. First, the components of n are expressed in its
declination �� arcsin�nz� and right ascension �� arctan�ny=nx�
relative to the x, y, and z spacecraft axes (Fig. 3):

n � cos� cos �x� cos� sin �y � sin�z (12)

The rotation of the spacecraft frame within the sun-spin-axis frame
(Fig. 2) is described by the spin-phase angle  based on the
transformation between the two frames in Eq. (8), and the
transformed normal vector becomes

n � ~ � � cos� cos ~ xs � cos� sin ~ ys � sin�zs (13)

Fig. 2 Geometry of the sun-spin-axis plane x
s
–z

s
.

Fig. 3 Solar radiation pressure force on a surface element.
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The components of the sun vector in the sun-spin-axis frame can
be found from Fig. 2:

s � sin �xs � cos � zs (14)

The instantaneous inner product of n and s follows as

�n 	 s� � sin � cos� cos ~ � cos � sin� (15)

To evaluate the vectors fa, fd, and fs in Eq. (11), we use the results
from Eqs. (13–15):

fa � �n 	 s�s� fax� ~ �xs � faz� ~ �zs � �cos � sin�

� sin � cos� cos ~ �fsin �xs � cos � zsg (16a)

fd � �n 	 s�n� fdx� ~ �xs � fdy� ~ �ys � fdz� ~ �zs
� cos�fcos � sin� cos ~ � sin � cos�cos2 ~ gxs
� cos�fcos � sin� sin ~ � 1

2
sin � cos� sin�2 ~ �gys

� sin�fcos � sin�� sin � cos� cos ~ gzs (16b)

fs � �n 	 s�2n� fsx� ~ �xs � fsy� ~ �ys � fsz� ~ �zs
� cos�fcos2� sin2� cos ~ � 1

2
sin�2�� sin�2��cos2 ~ 

� sin2� cos2�cos3 ~ gxs � cos�fcos2� sin2� sin ~ 

� 1
4
sin�2�� sin�2�� sin�2 ~ � � sin2� cos2� sin ~ cos2 ~ gys

� sin�fcos2� sin2�� 1
2
sin�2�� sin�2�� cos ~ 

� sin2� cos2�cos2 ~ gzs (16c)

The functions fak� ~ �, fdk� ~ �, and fsk� ~ �, with k� x, y, z, are
defined by the detailed expressions on the right-hand sides of

Eq. (16). They are periodic functions of ~ and can be expressed in the
form of a Poisson series:

fak� ~ � � c0ak � c1ak cos� ~ � �k� x; z� (17a)

fdk� ~ �� c0dk�
X2
m�1

n
cmdk cos�m ~ �� smdk sin�m ~ �

o
�k� x;y; z�

(17b)

fsk� ~ � � c0sk �
X3
m�1

n
cmsk cos�m ~ � � smsk sin�m ~ �

o
�k� x; y; z�

(17c)

It follows that the average value of fak� ~ � over the full spin period
equals c0ak, and similar results hold for the other functions. In general,
however, the solar radiation force acts only over a part of the spin
revolution: namely, when �n 	 s�> 0 [Eqs. (9) and (10)]. Therefore,
the calculation of the average values of the functions in Eq. (17) may
not be straightforward in practice.

C. Analysis of Condition �n � s�> 0

In the special case when the sun vector is directed along the spin
axis (i.e., when the solar aspect angle � is either 0 or 180 deg),
Eq. (15) shows that �n 	 s� �
 sin� remains constant. The
condition �n 	 s�> 0 is satisfied throughout the spin period if � is
positive (negative) when � � 0 (180 deg). Another special case
occurs when � reaches its extremes of
90 deg, which represent a
spacecraft top/bottom surface normal to the spin axis. In this case,
Eq. (15) produces �n 	 s� � 
 cos �, which again remains constant.
The condition �n 	 s�> 0 is satisfied throughout the spin period
provided that the sun angle � lies in the first/second quadrant,
respectively. Figure 4 provides a visualization of these two special
cases that represent the borders of the geometrically relevant domain
within the �–� plane.

In general, the condition �n 	 s�> 0 can be formulated as

cos ~ >�g (18)

whereg� tan�= tan � [see Eq. (15)]. This condition is satisfied over

the interval j ~ j< arccos��g�, which is meaningful as long as
jgj< 1. The special case�� 0 represents a surface element parallel
to the spin axis. In this case, we have g� 0 and the condition in

Eq. (18) is satisfied over the interval j ~ j � 90 deg for any value of

the sun angle. The same result j ~ j � 90 deg is obtained when
� � 90 deg, regardless of the value of the angle �. Another
interesting special case is�� �, when g equals 1. This characterizes
the boundary between �n 	 s�> 0 throughout the full spin revolution
and �n 	 s�> 0 during only part of the spin period. In this case,

Eq. (18) gives cos ~ ��1 and the sun shines on the surface area

throughout the spin period, except at ~ � 180 deg when the solar
radiation is parallel to the surface area (Figs. 2 and 3). When � lies in
the first quadrant and �> �, we find g > 1 and the condition of

Eq. (18) is satisfied for any ~ and the surface is sunlit throughout the
spin period. The same is true when � lies in the second quadrant and
�< � � 180 deg. In the cases ���� and �� 180 deg��, we
find g equals �1 and �n 	 s�< 0 throughout the spin revolution,

except at ~ � 0 when �n 	 s� � 0. Other cases within the �–� plane
can readily be interpreted with the help of Fig. 4.

In practical applications, the spacecraft consists of a number of
surface elements Ai with individual normals ni � �nix; niy; niz�T
within the spacecraft frame. Each of these elements has its own fai,
fdi, and fsi defined by Eq. (11), with ni instead of n, and its own

functions fkx;i ( ~ ), fky;i ( ~ ), and fkz;i ( ~ ), with k� a, d, s, as defined
in Eq. (16). Obviously, the condition �ni 	 s�> 0 of Eq. (10) must be
evaluated for each of the surface elements individually. For a box-
shaped spacecraft with four identical side-surface elements, the
interval during the spin revolution when �ni 	 s�> 0 differs for each
of these surfaces. It can be shown by geometrical arguments that the
effective solar radiation force (after averaging over a spin period)will
be identical for these four surface elements.

IV. Solar Radiation Torque Model

A. Calculation of Torque Components

The force F induced by solar radiation pressure on an arbitrary
spacecraft element A acts at the center of pressure cp of A (Fig. 3).
Because the reflecting properties of the surface element A are
assumed to be homogeneous, the point cp coincides with the

Fig. 4 Regions in the �–� plane with intervals in which �n � s�> 0.
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geometrical center ofA. The distance of cp from the spacecraft center
of mass cm is denoted by the vector r and is known as the center-of-
pressure offset. Obviously, r represents the lever arm of the solar
radiation torque T� r � F with respect to the spacecraft center of
mass cm.

The lever arm r has components �rx; ry; rz�T within the spacecraft
frame and can be expressed in terms of its right ascension and
declination angles 
 and � (Fig. 3):

r � r cos� cos 
x� r cos� sin 
y � r sin�z (19)

We transform the instantaneous lever arm r to the sun-spin-axis
frame (Fig. 2) in the same way as was done for the normal n to the
surface element in Eqs. (12) and (13):

r � ̂� � r cos� cos  ̂xs � r cos� sin  ̂ys � r sin�zs (20)

The torque vector T must now be evaluated in its components in
the sun-spin-axis reference frame. The cross products of Eqs. (16)
and (20) are needed for building the torque vector of an individual
surface area.

ta � r� ̂� � fa� ~ � � rfaz� ~ � cos� sin  ̂xs � rffax� ~ � sin�

� faz� ~ � cos� cos  ̂gys � rfax� ~ � cos� sin  ̂zs (21a)

td � r� ̂� � fd� ~ � � rffdz� ~ � cos� sin  ̂ � fdy� ~ � sin�gxs
� rffdx� ~ � sin�� fdz� ~ � cos� cos  ̂gys
� r cos�ffdy� ~ � cos  ̂ � fdx� ~ � sin  ̂gzs (21b)

ts � r� ̂� � fs� ~ � � rffsz� ~ � cos� sin  ̂ � fsy� ~ � sin�gxs
� rffsx� ~ � sin�� fsz� ~ � cos� cos  ̂gys
� r cos�ffsy� ~ � cos  ̂ � fsx� ~ � sin  ̂gzs (21c)

B. Total Average Force and Torque Expressions

The resulting total torque acting on the spacecraft is given by the
sum of all individual solar radiation torques produced by the forces
Fi on the corresponding elements Ai:

T ��ifTig ��ifri � Fig (22)

The generic form of the force given in Eq. (10) must be evaluated for
each surface element Ai. The cross product of the lever arm ri (of the
elements Ai) and the solar radiation forces Fi in Eq. (21) need to be
calculated for each surface element individually before they are
summed. The total average solar radiation torque over a spacecraft
spin revolution equals the sum of the averaged contributions from all
relevant surface elements Ai. This procedure leads to the effective
torque in components along the quasi-inertial sun-spin-axis frame.

Each of the surface elements has its own normalni that determines

the individual spin-angle range j ~ ij< arccos��gi� with gi �
tan�i= tan � [Eq. (18)], during which the condition �ni 	 s�> 0 is
satisfied. Thus, the total average solar radiation force and torque can
be written as

hFi � 1

2�

X
i

Z
�ni 	s�>0

Fi� ~ i�d ~ i (23a)

hTi � 1

2�

X
i

Z
�ni 	s�>0

fri � Fi� ~ i�gd ~ i (23b)

The notation h. . .idesignates the averaging operation that is shown in
explicit form inEq. (23). In general, it is not allowed to take ri outside
the integral, because both ri andFi are periodic functions of the spin-
phase angle ~ i within the sun-spin-axis frame.

The total average solar radiation force and torque expressions of
Eq. (23) can be reduced using Eq. (10):

hFi � �P
X
i

f�1 � 
�hfaii � �hfdii � 2
hfsiig (24a)

hTi � �P
X
i

f�1 � 
�htaii � �htdii � 2
htsiig (24b)

The calculation of the average solar radiation force over the relevant
part of the spin revolution involves the evaluation of the integrals
over the force expression defined in Eq. (11):

hfaii � h�ni 	 s�si �
1

2�

Z
�ni 	s�>0

fai� ~ i�d ~ i (25a)

hfdii � h�ni 	 s�nii �
1

2�

Z
�ni 	s�>0

fdi� ~ i�d ~ i (25b)

hfsii � h�ni 	 s�2nii �
1

2�

Z
�ni 	s�>0

fsi� ~ i�d ~ i (25c)

The integrands were defined in Eq. (16) and must be evaluated for
each surface element Ai individually.

The calculation of the average solar radiation torque involves the
following integrals:

htaii � h�ni 	 s��ri � s�i � 1

2�

Z
�ni 	s�>0

fri� ̂i� � fai� ~ i�gd ~ i

(26a)

htdii � h�ni 	 s��ri � ni�i �
1

2�

Z
�ni 	s�>0

fri� ̂i� � fdi� ~ i�gd ~ i

(26b)

htsii � h�ni 	 s�2�ri � ni�i �
1

2�

Z
�ni 	s�>0

fri� ̂i� � fsi� ~ i�gd ~ i

(26c)

The integrands of Eq. (26) are defined in Eq. (21) and need to be
evaluated for each individual surface element. These results are valid
for arbitrary spacecraft configurations andwill be illustrated for a few
special cases next.

V. Examples of Averaged Forces and Torques

A. Surface Element Normal to the Spin Axis

The most straightforward illustration of the preceding model is
provided by a surface area A that is oriented normal to the spin axis
(e.g., a spacecraft top surface or aflat solar sail with an arbitrary offset
between its center of pressure and the satellite’s center of mass). To
evaluate the effects of small deviations in the nominal orientation of
the surface area,we take the normaln to the surface area to be slightly
misaligned from its ideal direction (i.e., �� �=2 � ") with an
arbitrary phase angle �. The expression for the normal vector n to the
single surface element A follows from Eq. (13):

n � ~ � � zs � " cos ~ xs � " sin ~ ys �O�"2� (27)

The first-order approximation of the inner product �n 	 s� in Eq. (15)
is

fn� ~ � 	 sg � cos � � " sin � cos ~ �O�"2� (28)

When substituting �� �=2 � " into Eq. (18), we find that the

condition �n 	 s�> 0 or cos ~ >�gwill be satisfied for any value of
~ , based on the fact that g� 1=�" tan ��> 1. An exception occurs
when � > �=2 � ". This implies that the sun would be closer to the
surface element than the value of themisalignment angle ", whichwe
exclude here.

After performing the averaging operation over the spin period, the
" term on the right-hand side of Eq. (28) vanishes and the leading
term leads to a constant contribution:
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hfn� ~ � 	 sgi � 1

2�

Z
�n	s�>0

fn� ~ � 	 sgd ~ � cos � �O�"2� (29)

The force terms of Eq. (16) can be simplified by substituting
�� �=2 � ":

fax � sin � cos � � " sin2� cos ~ �O�"2�; fay � 0

faz � cos2� � 1
2
" sin�2�� cos ~ �O�"2�

(30a)

fdx� "cos� cos ~ �O�"2�; fdy� "cos� sin ~ �O�"2�

fdz� cos�� " sin� cos ~ �O�"2� (30b)

fsx � " cos2� cos ~ �O�"2�; fsy � " cos2� sin ~ �O�"2�

fsz � cos2� � " sin�2�� cos ~ �O�"2� (30c)

After averaging these expressions over the spin period, we find:

hfai � sin � cos �xs � cos2�zs �O�"2� (31a)

hfdi � cos �zs �O�"2� (31b)

hfsi � cos2�zs �O�"2� (31c)

Finally, after averaging the solar radiation force over a full spin
revolution,wefind that the resulting averaged force vector lieswithin
the sun-spin-axis plane:

hFi��Pcos�f
�1� 
� sin��xs� 
�1� 
� cos�� ��zsg�O�"2�
(32)

This result shows that small errors in the orientation of the surface
elements have a negligible second-order effect on the resulting
average solar radiation force.

The cross products that appear in the integrands of the torque
expressions of Eq. (26) were given in explicit forms in Eq. (21).
After substituting �� �=2 � " and averaging over the spin period,
we find

htai � 1
2
r sin� sin�2��ys � 1

2
"r cos� sin �fcos � sin�
 � ��xs

� cos � cos�
 � ��ys � sin � sin�
 � ��zsg �O�"2� (33a)

htdi � 1
2
"r cos�fsin � sin�
 � ��xs � sin � cos�
 � ��ys

� 2 cos � sin�
 � ��zsg �O�"2� (33b)

htsi � "r cos� cos �fsin � sin�
 � ��xs � sin � cos�
 � ��ys
� cos � sin�
 � ��zsg �O�"2� (33c)

These results indicate that the misalignment angle "may, in general,
cause windmill-type torque effects about the zs and xs axes.
However, in the special case when 
 � �, the normal n to the surface
element and the torque lever arm r lie in the same plane (Fig. 3) and
we obtain the simplified torque expressions (up to first-order "
terms):

htai � 1
2
r sin� sin�2��ys � 1

4
"r cos� sin�2��ys (34a)

htdi � �1
2
"r cos� sin � ys (34b)

htsi � �1
2
"r cos� sin�2��ys (34c)

The contribution of the constant zs force component in Eq. (31) has
no effect, because the circulating in-plane component of the lever
arm vanishes after averaging. The resulting torque vector in
Eq. (24b) will be directed along the ys axis (i.e., normal to the sun-
spin-axis plane). Its leading term originates from the absorptive force

component along the xs axis:

hTi � �1
2
P�1 � 
�r sin� sin�2��ys (35)

It can be seen that the leading term of hTi in Eq. (35) equals
hri � hFi, with hri � r sin�zs from Eq. (20) and hFi in Eq. (32).
When the center-of-pressure offset lies within the spacecraft x–y
plane (i.e., �� 0), the leading term of the average torque vanishes
(in the present example) due to the circulating lever arm. However,
all of the first-order contributions listed in Eq. (34) would remain. On
the other hand, when the center-of-pressure offset is along the spin
axis (i.e., �� 90 deg), a nonzero leading-term torque will be
generated (unless the solar aspect angle � is 0 or 90 deg). This torque
would affect the long-term evolution of the spacecraft spin-axis
orientation.

B. Surface Element Parallel to the Spin Axis

The second special case represents a surface element A oriented
parallel to the spin axis (for instance, a side panel of a spinning
spacecraft). In this case, the declination angle� of the normal vector
n is nominally zero. To also assess the effect of a small error in the
alignment of the surface (or in the spin-axis orientation), we take
�� ". When including only first-order " terms, the expression for
the normal vector n from Eq. (13) takes the form

n � ~ � � cos ~ xs � sin ~ ys � "zs �O�"2� (36)

Equation (15) now becomes

n � ~ � 	 s� sin � cos ~ � " cos � �O�"2� (37)

The solutions of the equation n� ~ � 	 s� 0 are ~ 1 ���=2 �
"= tan � and ~ 2 � �=2� "= tan � in first-order approximation.

Furthermore, it can be seen that n� ~ � 	 s is positive over the interval
from ~ 1 to ~ 2 for any solar aspect angle � away from the spin axis,

and so the first-order approximation of the average value of n� ~ � 	 s
over the relevant interval is

hfn� ~ � 	 sgi � 1

2�

Z ~ 2

~ 1

fn� ~ � 	 sgd ~ � �1=�� sin � � 1

2
" cos �

(38)

The force terms of Eq. (16) can be simplified when substituting
�� ". Their first-order approximations are

fax � sin2� cos ~ � 1
2
" sin�2��; fay � 0

faz � 1
2
sin�2�� cos ~ � "cos2�

(39a)

fdx � sin � cos2 ~ � " cos � cos ~ 

fdy � 1
2
sin � sin�2 ~ � � " cos � sin ~ ; fdz � " sin � cos ~ 

(39b)

fsx � sin2� cos3 ~ � " sin�2��cos2 ~ 

fsy � sin2� sin ~ cos2 ~ � 1
2
" sin�2�� sin�2 ~ �

fsz � " sin2� cos2 ~ 

(39c)

The time-varying geometry of the surface element relative to the sun

causes the leading terms to be functions of ~ in the present case.After
performing the averaging operation on these expressions over the

interval from ~ 1 to ~ 2, we find the first-order results:

hfai � f�1=�� sin � � 1
2
" cos �gfsin �xs � cos � zsg (40a)

hfdi � 1
4
sin �xs � �"=��f32 cos �xs � sin � zsg (40b)

hfsi � 2=�3��sin2�xs � 1
4
" sin �f2 cos �xs � sin � zsg (40c)
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We find the following final expression for the force (including the
first-order misalignment terms):

hFi � ��P=�� sin �f
�1� 
=3� sin � � ��=4�xs
� 
�1 � 
� cos ��zsg � 1

2
"Pfcos �
�1� 
� sin � � 3�=��xs

� 

� �1 � 2
�cos2� � ��=�� sin ��zsg (41)

This result shows that the leading and first-order misalignment terms
of the average solar radiation force are acting within the sun-spin-
axis plane.

When substituting the force terms of Eq. (39) and averaging the
expressions of Eq. (21), as illustrated in Eq. (26), we find the
following results for the leading torque terms:

htai � 1
4
r sin �f� cos � cos� sin�� � 
�xs

� 
�4=�� sin� sin � � cos� cos � cos�� � 
��ys
� cos� sin � sin�� � 
�zsg (42a)

htdi � 1
4
r sin �fsin�ys � �4=�� cos� sin�� � 
�zsg (42b)

htsi � 2=�3��rsin2�fsin�ys � 1
4
cos� sin�� � 
�zsg (42c)

The simplifying assumption that the orientation of the normal
vector of the surface element and the lever-arm vector lie in the same
planewill now also be adopted in the present example. Therefore, the
normal and the lever armwill have the same spin-phase angle and the
angles � and 
 become equal. The leading term of the averaged torque
takes now the form

hTi � ��P=��r sin �fsin�
�1� 
=3� sin � � ��=4�
� ��=4��1 � 
� cos� cos �gys (43)

When comparing the results of Eqs. (41) and (43), we find that the
leading torque term hTi ≠ hri � hFi in this case.

For completeness, we also provide the first-order averaged-torque
terms for the special case when � and 
 are equal:

htaifirst order � 1
2
"r cos �fsin� sin � � �3=�� cos� cos �gys (44a)

htdifirst order � 1
4
"rf�6=�� sin� cos � � cos� sin �gys (44b)

htsifirst order � 1
2
"r sin �fsin� cos � � 4=�3�� cos� sin �gys (44c)

As in the previous example, the resulting averaged-torque points in
the direction normal to the sun-spin-axis plane.

C. Generic Force and Torque Expressions

The force and torque results established for the two preceding
special cases are useful for evaluating the solar radiation effects on
arbitrary spacecraft configurations. This is done by identifying the
relevant surface areas with their specific material properties and
simply adding the individual averaged contributions. For instance,
when studying a spacecraft of rectangular shape with four side
surfaces with identical material properties, the contributions of each
surface will be equal (after averaging over a spin period), and so the
force and torque results in Eqs. (32), (35), (41), and (43) need only to
be multiplied by a factor of 4.

The torque results for the two examples presented may be written
in the generic form:

hFi � �Pff1xs � f2zsg; hTi � �Prfg1 sin� � g2 cos�gys
(45)

The lever arm r represents the offset of the center of pressure with
respect to the center of mass and has components rz � r sin� along
the spin axis and rp � r cos� within the plane normal to the spin
axis. The force and torque terms f1, f2, g1, and g2 contain the
material parameters of the spacecraft surfaces, but they also depend
on the solar aspect angle, as summarized in Table 1. Although the g1
torque terms in the two cases of Table 1 are identical to the associated
f1 of the force expression, this correspondence may not be true in
general.

A final assumption may be introduced to simplify the torque
expression. When the satellite surfaces are assumed to be essentially
specularly reflecting (i.e., 
� 1 and � � 0), the only remaining
torque term is produced by the side surfaces (Table 1):

hTi � �Prg1 sin�ys ��4Przsin2�=�3��ys (46)

The sign of hTi is determined by the sign of the center-of-pressure
offset along the spin axis (i.e., rz).

VI. Long-Term Evolution of Spin-Axis Pointing

A. Precession of Angular Momentum

The effect of the average torque on the attitude motion follows
fromNewton’s second law for rotating rigid bodies, and so the torque
vector equals the rate of change of the angular momentum vector.
Because the SRP torque is relatively small, the change in the angular
momentum vector over a spin period may be considered
infinitesimal. It was found in Eqs. (45) and (46) that the average
SRP torque acts in a direction perpendicular to the instantaneous
angular momentum vectorH so that only the direction ofH will be
affected. The infinitesimal change �H in the angular momentum
vector over the spin period �t can be written as follows [14]:

T � dH=dt! �H� hTi�t (47)

The change�H is normal to the vectorH and points along the vector
hTi, which acts in the �ys direction of the quasi-inertial sun-spin-
axis frame [when assuming rz > 0 in Eq. (46)]. The angle �# over
which the angular momentum vector moves during one spin period
can be calculated as follows (Wertz [15], Eq. 19.61):

�#� j�Hj=jHj � T�t=�Iz!� 
rad� (48)

The quasi-inertial (xs, ys, zs) reference frame in Fig. 2 is defined by
the instantaneous directions of the spacecraft spin axis and the sun
vector. This frame is subject to a gradual drift under the combined
motion of the sun vector s and the precession w induced by the SRP
torque. To be able to apply Newton’s law, this frame must be
redefined after every spin period and be considered constant during
the spin revolution.

The direction of the torque precession w is normal to the
instantaneous H and the hTi vectors. For rz > 0, the torque points
along the negative ys axis and the vectorwwill be along the positive
xs axis. The precession magnitude follows from Eq. (48):

hTi � w �H! w� jwj ��#=�t� T=�Iz!� 
rad=s� (49)

Table 1 Leading terms of the force and torque results

Surface element normal to the spin axis

Force components f1 � �1 � 
� sin � cos � f2 � cos �
�1� 
� cos � � ��
Torque components g1 � �1 � 
� sin � cos � g2 � 0

Surface element parallel to the spin axis

Force components f1 � sin �
�1� 
=3��sin ��=�� �=4� f2 � �1 � 
�
sin � cos ��=�
Torque components g1 � sin �
�1� 
=3��sin ��=�� �=4� g2 � 1

4
�1 � 
� sin � cos �
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The orientation of the satellite spin axis itself is affected by the
change in the angular momentum vector in a complicated manner. It
is well known that for a spacecraft spinning about its axis of
maximum moment of inertia, the spin axis tends to align itself with
the direction of the angular momentum vector, which corresponds to
the minimum-energy state. However, for a spacecraft that spins
about its minimum axis of inertia, an active nutation damping device
must be employed. Nutational effects amount to no more than minor
deviations from the long-term trend presented here and may be
ignored in the present analysis.

B. Model for Spin-Axis Motion

The long-term evolution of the spacecraft spin axis z�t� under the
precession ratew�t� induced by the SRP torque follows themotion of
the angular momentum vector and can be described by

_z�t� � w � z� wfxs � zg (50)

The vector _z points in the direction of T � hTi, which is along �ys
for rz > 0.When using the definition of the xs axis in Eq. (4), it is easy
to eliminate the xs vector in Eq. (50) in favor of the sun vector:

_z�t� � wfs � zg= sin � (51)

When substituting the results of Eqs. (46), (49), and (51), we obtain

_z�t� �Q sin �fs � zg (52)

where Q� 4Prz=�3�Iz!� 
rad=s�.

C. Approximate Solution

To construct an approximate solution of Eq. (52), we assume that
the long-term variations in the spacecraft attitude remain small (say,
less than 5 deg) so that the z vector in the right-hand side of Eq. (52)
may be replaced by its initial value z0 � z�t� 0�. Furthermore, the
variations in the solar aspect angle will also be assumed to remain
small. In practical applications, themost accurate results are obtained
when taking the averaged (over the full year) solar aspect angle value
�avg over the year (on the basis of the vector z0), rather than the initial
sun angle �0. The sun vector s in Eq. (52) is now replaced by its
inertial components as a function of the sun’s longitude ���d� �
!��d � d�� given in Eq. (2):

z01�d� �Q sin �avefz30 cos "� � z20 sin "�g sin���d� (53a)

z02�d� �Q sin �avefz10 sin "� sin���d� � z30 cos���d�g (53b)

z03�d� �Q sin �avefz20 cos���d� � z10 cos "� sin���d�g (53c)

The independent variable is expressed in days d relative to the vernal
equinox. We evaluate the integrals with the help of Eqs. (2) and (3):Z

d

d0

cos���s�ds� S�d; d0�=!� (54a)

where S�d; d0� � sin���d� � sin���d0�.Z
d

d0

sin���s�ds��C�d; d0�=!� (54b)

where C�d; d0� � cos���d� � cos���d0�.
The solutions of Eq. (53) are now

z1�d; d0� � z10 �W�z20 sin "� � z30 cos "��C�d; d0� (55a)

z2�d; d0� � z20 �Wz10 sin "�C�d; d0� �Wz30S�d; d0� (55b)

z3�d; d0� � z30 �Wz20S�d; d0� �Wz10 cos "�C�d; d0� (55c)

The nondimensional parameter W equals Q sin �ave=!� and is a
relatively small quantity of the order of magnitude of 10�2.

D. Spin Axis Normal to the Ecliptic

In the special case when the initial spin axis is pointing close to
normal to the ecliptic plane, we have sin �0 � 1 and, when assuming
that the attitude excursions remain small, also sin �ave � 1 and thus
W �Q=!�. When analyzing this case, it is most convenient to
employ �, �, and 	, describing the components of the attitude vector z
within the ecliptic reference frame:

�
�
	

0
@

1
A� 1 0 0

0 cos "� sin "�
0 � sin "� cos "�

2
4

3
5 z1

z2
z3

 !
(56)

The initial spin vector that is normal to the ecliptic is defined by
�0 � �0 � 0 and 	0 �
1. When considering 	0 � 1, the vector
corresponds to z0 � �0;� sin "�; cos "��T in the equatorial inertial
frame [see also Eq. (7)]. After applying the transformation in
Eq. (56), we find for the results of Eq. (55):

��d; d0� � �Wfcos���d� � cos���d0�g (57a)

��d; d0� � �Wfsin���d� � sin���d0�g (57b)

	�d; d0� � 1 (57c)

The evolution of the spin-axis vector can be interpreted as the
periodic circular motion of the projected z vector in the ecliptic plane
as follows:

f��d� �Wc0g2 � f��d� �Ws0g2 �W2 (58)

with c0 and s0 denoting the cosine and sine of ���d0�, respectively.
For illustration, we take the starting date at the vernal equinox

(d0 � d� ) so that c0 � 1 and s0 � 0, according to Eq. (3). The
projected attitude vector describes a circlewith its center on the � axis
at the point �c �W and �c � 0. The spin-axis attitude excursion will
reach its maximum value �max after half a year with

�max � 2�c � 2W � 2Q=!� (59)

For different starting dates, it can easily be shown that the same
maximum attitude excursionwill be reached after a half-year interval
as well.

VII. Practical Applications of Model

A. Maximum Spin-Axis Excursion

The application of the preceding model for the long-term attitude
motion is illustrated for a satellite with its spin axis oriented close to
the ecliptic pole direction. The CONTOUR deep space probe was
designed to be left unattended during a number of hibernation
periods with durations of up to 10 months [12]. Because of system-
level design and operational considerations, it was attractive to have
the spin axis pointing in a direction close to the ecliptic pole. This
attitude orientation leads to relatively small variations in the
spacecraft power and thermal conditions. It is crucial to have a good
understanding of the maximum possible reach of the resulting
attitude motion during the hibernation phases. The relevant design
parameters of the CONTOUR spacecraft are listed in the second
column of Table 2. The solar aspect angle � is always close to 90 deg
for an attitude-pointing orientation in the neighborhood of the
ecliptic pole. On the basis of this condition, the general results of
Table 1 indicate that the force and torque effects generated by the top
and bottom surfaces may be neglected.

The adopted satellite configuration is approximately cylindrical
with height h� 1:75 m and radius rcyl � 0:9 m, and so the total
cylindrical surface area is close to 10 m2. The worst-case center-of-
pressure offset along the spin axis is expected to be rz � 5 cm.
Because the objective is to arrive at a worst-case estimate for the
attitude drift, conservative values are taken for the surface reflectivity
parameter (
� 1), for the spin rate (15 rpm), for the spin moment of
inertia (285 kg=m2), and for the distance from the sun (1 AU).
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Although the torque model presented in the previous sections was
established for a regular flat-surface element, it can readily be
adapted to a cylindrical surface by considering N flat surfaces, each
with a surface area of hrcyl�’ with �’� 2�=N (with N a large
integer). When the cylinder has nearly homogeneous material
properties, all of the N elements will have identical contributions to
the resulting SRP torque. The total torque on the spacecraft is then
found by summing the contributions of all N surface elements.
Therefore, the total torque on a homogeneous cylindrical surfacewill
be identical to that of a flat surface, with the same material properties
and representative area A� N�hrcyl�’� � 2�hrcyl. After substitut-
ing the relevant input parameters into the torque expression of
Eq. (46), wefind the following useful result for themaximumattitude
excursion from Eq. (52):

�max � 2Q=!� � 8pArz=�3�Iz!!�� 
rad� (60)

The resulting maximum attitude-drift excursion for CONTOUR on
the basis of the model of Eq. (60) and the inputs listed in Table 2
amounts to �max � 1:23 deg (see the last row of Table 2). This result
indicates that the attitude drift induced by the solar radiation torque
will stay well within acceptable limits throughout the hibernation
periods.

An additional example is considered in the last column of Table 2:
namely, a box-shapedminisatellite with relatively small dimensions.
Most of the remaining inputs are taken identical to the conservative
parameters adopted in the first example. The resulting maximum
pointing excursion predicted by Eq. (60) is 1.60 deg. This indicates
that the resulting attitude drift is not very sensitive to the specific
satellite configuration parameters.

B. Long-Term Attitude Motion

Figure 5 shows the long-term evolution of the spacecraft spin axis
over a full year, with the initial spin-axis orientation along the ecliptic
north pole based on the CONTOUR inputs of Table 2. The analytical
results are generated by MATLAB simulations using the ecliptic
long-term model in Eq. (57). The results of the analytical model are
virtually identical to those obtained from a numerical integration
using MATLAB.

The figure shows the traces of the projected attitude vector in the
plane normal to the ecliptic north pole. Two cases are shown, the first
one starting at the vernal equinox and the second one starting at the
summer solstice when the sun is 90 deg further ahead. The resulting
spin-axis motion projected on the ecliptic plane is essentially circular
with a period of 1 yr. The maximum spin-axis excursion (relative to
the starting attitude) is about 1.23 deg and is reached after half a year.
When considering different starting dates, the inertial direction of the
spin-axis motion changes in accordance with the initial sun position
within the ecliptic plane, but the maximum excursion is the same.
The spin-axis motion starts out in an inertial direction that is 90 deg
behind the initial sun position.

The case shown in Fig. 5 is unique because of the initial attitude
pointing along the ecliptic north pole. This implies that the initial
solar aspect angle �0 � 90 deg. In the absence of any attitude
disturbance and control torques, the solar aspect angle would stay at
90 deg throughout the year [within the approximations of the adopted
sunmotionmodel of Eq. (2)]. Because the attitude variations induced
by the SRP torques are relatively small, the average solar aspect angle
�ave does not deviate far from 90 deg. In fact, themaximum change in

solar aspect angle is equal to the maximum attitude excursion of
1.23 deg. Therefore, the approximate analytical results are extremely
close (i.e., within 10�4 rad) to those of the exact numerical
simulations over a period of about four years.

C. Spin Axis Normal to the Earth’s Equator

We now consider the situation when the initial spin-axis
orientation points along the Earth’s equatorial north pole. Analytical
results are generated by means of MATLAB simulations based on
the general long-term model presented in Eq. (55). The accuracy of
the analytical model is evaluated by means of a comparison with
results from a numerical integration, as illustrated in Fig. 6.

Because of the effect of the ecliptic obliquity [Eqs. (2) and (3)], the
initial solar aspect angle �0 now takes different values within the
range of 66.56 to 113.44 deg, depending on the starting date. If the
attitudewere to stayfixed, the average solar aspect angle �ave over the
year would still be 90 deg [within the approximations of the adopted

Fig. 5 Inertial motion of the spin axis with an initial attitude normal to

the ecliptic.

Table 2 Overview of spacecraft parameters

Parameters CONTOUR Minisatellite

� �90 deg �90 deg
h 1.75 m 0.8 m
A 2� � 1:75 � 0:9 m2 4 � �0:8 � 1:1 m2�
rz 0.05 m 0.03 m

 �1 �1
Iz 285 kg=m2 70 kg=m2

! 15 rpm 10 rpm
�max 1.23 deg 1.60 deg

Fig. 6 Inertial motion of the spin axis with an initial attitude normal to

the equator.
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sun motion model of Eq. (2)]. This result is due to the fact that the
average value of the dot product h�z 	 s�i vanishes over a year, as can
be seen from Eqs. (2) and (3). It may be noted that the preceding
statements are true for any fixed-attitude orientation. Because the
attitude drift remains small, the average solar aspect angle will stay
close to 90 deg, as in the previous case. On the other hand, however,
the variations of the actual solar aspect angle about its average �ave
value now have a relatively large amplitude of 23.44 deg and lead to
the gradual divergence between the analytical and the numerical
results over a time period of 1500 days, as illustrated in Fig. 6.

Themaximum attitude excursion depends on the starting date (i.e.,
about 0.0189 rad or 1.08 deg for the vernal and autumnal equinoxes
and 0.0206 rad or 1.18 deg for the two solstices). The difference is
caused by the fact that the average SRP torque has a different
magnitude over the first half-year interval for the two cases. The
average solar aspect angle over the first half-year is 75.9 and
105.2 deg for the vernal and autumnal equinoxes and 90.6 and
90.5 deg for the summer and winter solstices, respectively. This fact
also accounts for the elliptical shape of the resulting attitude motion,
in contrast to the circular track in the previous case shown in Fig. 5.

Finally, it may be pointed out that for initial attitude orientations
that are further away from the ecliptic pole than the equatorial case in
Fig. 6, the variations in the solar aspect angle will be even larger and
the long-term attitude tracks have a more elongated shape. In any
case, the average sun angle will be 90 deg (for the sun motion model
assumed here). The validity of the analytical model presented here
will degrade during those periodswhen the deviation of the sun angle
from its average value is relatively large.

VIII. Conclusions

A compact analytical model was established for predicting the
long-term spin-axis attitude drift of a spin-stabilized spacecraft in the
presence of solar radiation disturbance torques. A few illustrative
practical examples with relevance to the attitude-pointing concept
during hibernation periods were presented. The results demonstrate
the periodic nature of the long-term spin-axis drift, which typically
stays within acceptable excursion limits of 1 to 2 deg. The model can
be used as a practical tool for better understanding of attitude motion
and for designing attitude control concepts for future spacecraft and
interplanetary probes. The results may also be useful for specific
spacecraft design purposes (e.g., for predicting propellant needs for
correction maneuvers based on specified spin-axis-pointing
requirements).
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