
1066-033X/08/$25.00ª2008IEEE OCTOBER 2008 ß IEEE CONTROL SYSTEMS MAGAZINE 1

L E C T U R E N O T E S ß

A Tutorial on Vectors and Attitude

JOZEF C. VAN DER HA and MALCOLM D. SHUSTER

W
e examine vectors and attitude in Engineering with

greater attention to detail than in earlier works on

the subject. This tutorial is an expansion of part of a

survey of attitude representations [1]. The most salient

characteristic of this work is a greater emphasis on the dis-

tinction between physical vectors and their representation

as column vectors. The need for such a treatment arises

most strongly in attitude estimation, but logically, the need

is present also in attitude dynamics and control.

Attitude is estimated by comparing two different column-

vector representations of the same physical vector. Thus,

from the beginning, the distinction between physical vec-

tors and column vectors requires explicit treatment in atti-

tude estimation. In works on attitude dynamics and control

[2, 3, 4], however, this distinction is often overlooked or

presented only in attitude statics, with the transition to atti-

tude dynamics being made as much through verbal argu-

ments as by mathematical development.

History plays a role in this situation. Attitude dynamics

begins in the second half of the eighteenth century with the

work of Euler. In contrast, the first journal article on attitude

estimation did not appear until 1964 [5], an engineering note

of only one-and-a-half pages, still cited today. More than a

decade would pass beyond that event before the subject

began to attract serious formal attention. The need to distin-

guish between physical vectors and their column-vector

representations with respect to a basis had been recognized

by Pars [6], who wrote in 1965

‘‘Strictly speaking we should distinguish between a vec-

tor X and the column matrix whose elements are its com-

ponents, but in practice we shall often regard the terms

vector and column matrix as synonymous, a usage

which will not give rise to any confusion.’’

With the passage of half a century, including most of the

space age, Pars’ statement requires some emendation. In fact,

failure to recognize the difference between physical vectors

and column vectors has led sometimes to errors in spacecraft

mission support software. Usually, these errors are corrected

during software testing, but such errors should not occur in

the first place. A contributing factor to such errors is the unfa-

miliarity of attitude work for many engineers, who generally

receive little exposure to this area in university studies. As

remarked in [7], attitude estimation and control ‘‘is generally

considered the most complex and least intuitive of the space

vehicle design disciplines.’’ History plays a further role also

in that attitude estimation, being a young subject, is not well

represented as a research area at universities, although, as a

practical activity, attitude determination occupies a large

number of engineers in government and industry.

The reason that attitude dynamics texts could be casual about

the distinction between physical vectors and their column-

vector representations is that, once the Euler transport equation

with the ‘‘v3 ’’ term is obtained, further development of the

subject is on solid ground. Although the attitude matrix is the

transformation matrix of column vectors from the inertial frame

to the body frame, all dynamical calculations are generally car-

ried out only in the body frame. Thus, the need for column vec-

tor representations with respect to both the body reference

frame and the inertial reference frame largely disappears.

The present work treats physical vectors, column vectors, and

the attitude only for attitude statics, where many misconceptions

exist that affect the development of a more complete formalism

embracing also attitude dynamics. The material here might

appear to have been already well traveled, but that is not the case.

Most treatments of vectors and attitude sidestep important

conceptual issues that the present work meets head on. In addi-

tion, our goal is to be comprehensive rather than incremental.

The chief innovations of the present work compared to [1]

include a more careful presentation of physical vectors and

column vectors, the introduction of dual vectors, which greatly

improves the presentation of dyadics, and a critical examination

of the attitude dyadic. Many of the results that appear in [1] are

derived here in a new way and examined more critically.Digital Object Identifier 10.1109/MCS.2008.000000

After Einstein had been awarded the Nobel prize and had

written a popular book Relativity; the Special and the

General Theory, a reporter came to Einstein’s home in Berlin

and asked one of the great physicist’s nieces if she had read

the book and understood it. ‘‘Oh, yes,’’ she replied, ‘‘every-

thing but the part on coordinate systems.’’
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PHYSICAL VECTORS AND COLUMN VECTORS
We begin at the beginning. Vectors exist at three levels of

abstraction. At the lowest level of abstraction are the numeri-

cal column vectors. If we write

v ¼
1:0
2:3
8:32

" #
, (1)

then v is a numerical column vector. The next level of

abstraction is the column-vector variable, which we write in

terms of components as

v ¼
v1

v2

v3

" #
: (2)

The difference between a numerical column vector and a

column-vector variable is the same as that between writing

‘‘3’’ and writing ‘‘x.’’ What makes both of these objects

column vectors is that the two are 3 3 1 arrays, but what

makes them vectors from the standpoint of Algebra is that

column vectors are elements of a structure, a vector space,

which has certain algebraic properties, presented below.

Both numerical column vectors and column-vector varia-

bles are column vectors. For obvious reasons, numerical

column vectors do not receive special attention in this work.

The third type of vector is a physical vector, described not by

components, that is, not by three entries in an array, as in (1)–(2),

but by some physical property. The physical description of the

direction of a given star as seen from the Earth is meaningful

by itself without specifying a reference frame for the calcula-

tion of components. A physical vector cannot be described by

giving components (coordinates), because a physical vector is

coordinate-free. The physical vector possesses a level of

abstraction above that of the column-vector variable. We write

a physical vector as ‘‘v’’ (note the different font) together with a

physical description or a relationship to other physical vectors.

When we draw a vector as an arrow emanating from a point

with an arrowhead at the other end, we are depicting a physi-

cal vector. A vector measurement, however, can have a numer-

ical value, and therefore, must be a column vector. Both

physical vectors and column vectors have an important place

in Engineering, although this fact is acknowledged, perhaps,

less frequently than should be the case.

Physical vectors, column-vector variables, and numerical

column vectors, are the three vectorial quantities we must treat.

The difficulty of that treatment arises from the fact that physical

vectors and column vectors transform differently under rota-

tion, that is, physical vectors and column vectors have different

tensorial properties. In fact, vectors have algebraic properties as

well as tensorial properties. The transformations are tantaliz-

ingly similar, but have subtle differences, and, if these subtle dif-

ferences are not given proper attention, sign errors can result.

We use the Times bold italic font to denote a physical

vector (u, v, êk, . . .) and the Helvetica bold font to denote

column vectors (u, v, “ek, . . .). For the most part, matrices are

denoted by upper-case Helvetica letters (A,C, . . .), and their

entries by the corresponding upper-case Times italic letters

(Aij,Cij, . . .). In handwriting, we usually write a physical

vector u as ~u and a column vector u as u. A dyadic (A ) or

vectrix (V ) is handwritten as
$
A or

$
V.

VECTOR SPACES

Physical Vector Spaces
A physical vector space [8–10] consists of a set of physical

vectors V ¼ fu, v,w, . . .g, a set of scalars F ¼ fa, b, c, . . .g,
and two operations, namely, physical vector addition and

multiplication of a physical vector by a scalar. The set of sca-

lars is a field, that is, a set whose elements have the same

algebraic properties as the real numbers. In practical appli-

cations, the field is almost always the field of real numbers.

Note that none of the cited Mathematics books [8–10]

makes the distinction between physical vectors and column

vectors. In fact, all of these works illustrate the algebra of

abstract vector spaces using column vectors.

The set V of physical vectors forms a group [10] under vec-

tor addition and satisfies necessarily the following conditions

(a) If u and v are physical vectors, then so is uþ v.

(b) Addition of physical vectors is associative,

(uþ v)þ w ¼ uþ (vþ w), (3)

and commutative,

uþ v ¼ vþ u: (4)

(c) There exists a physical vector 0 such that, for every

physical vector v

vþ 0 ¼ v: (5)

(d) For every physical vector v, there exists a physical

vector�v such that

vþ (�v) ¼ 0: (6)

By convention, we write

uþ (�v) � u� v (7)

and speak of vector subtraction.

Multiplication of a physical vector by a scalar is defined

and satisfies

a(b v) ¼ (ab)v, (8)
(aþ b)v ¼ avþ bv, (9)
a(uþ v) ¼ auþ av, (10)

as well as

1v ¼ v: (11)

It follows that

0v ¼ 0 (12)
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and

(�a)v ¼ �(av): (13)

Equations (3)–(6) and (8)–(11) define the algebraic prop-

erties of physical vector spaces. Although (3)–(13) are writ-

ten in terms of physical vectors, these equations must hold

also for column vectors. The basic abstract algebraic

description of a vector space above is, however, without

physical content. In order to connect physical vectors to

reality, we must find a way to connect physical vectors to

the field F . We use the symbol V to denote not only the set

of physical vectors, but also the physical vector space.

The Scalar Product
We improve upon the physical vector space by adding a

scalar product ( � ), also called an inner product or a ‘dot’

product, which allows us to associate with each pair of physi-

cal vectors a scalar. For physical vectors u, v, and w, the

scalar product u � v is an element of the fieldF and satisfies

u � v ¼ v � u, (14)

v � v � 0, (15)

v � v ¼ 0 if and only if v ¼ 0, (16)

u � (av) ¼ a(u � v), (17)

(uþ v) � w ¼ u � wþ v � w: (18)

A vector space with a scalar product is called an inner-

product space.

The magnitude of a physical vector, written jvj, is defined as

jvj ¼ (v � v)1=2: (19)

The scalar product for physical vectors, in order to have

practical value, must be specified also physically, for exam-

ple, as the product of the lengths of two physical vectors

and the cosine of the included angle.

The Vector Product
In a three-dimensional physical vector space, a vector

product (3), also called a ‘cross’ product, with values in V,

can be constructed satisfying

u3 v ¼ �v3 u, (20)

(au) 3 v ¼ a(u3 v), (21)

(uþ v) 3w ¼ u3wþ v3w: (22)

The physical rule for the vector product is that ju3 vj ¼
juj jvjsin h, where h is the angle needed to rotate u into v in

their common plane, and the direction of u3 v is given by

the rule of the right-hand screw.

Bases
Every physical vector v in three-dimensional space can be

written in the form [8–10]

v ¼ aiþ bjþ ck, (23)

where i, j, and k are the physical basis vectors, which may be

any three linearly independent physical vectors in the

physical vector space. The numbers a, b, and c are the compo-

nents (or coordinates) of v with respect to this basis. As long

as the physical basis vectors are linearly independent, the

components exist and are unique.

A set of physical basis vectors, henceforth assumed to

be linearly independent, and an origin constitute a refer-

ence frame. In this work, we assume there is only one ori-

gin and use ‘‘reference frame’’ to mean the same as

‘‘basis’’ and ‘‘frame-independent’’ to mean the same as

‘‘basis-independent.’’

If the physical basis vectors satisfy

i � j ¼ i � k ¼ j � k ¼ 0, (24)

the physical basis is called orthogonal. If, in addition,

i � i ¼ j � j ¼ k � k ¼ 1, (25)

the physical basis is called orthonormal, and the physical

basis vectors are then written as ı̂, j
:̂
, k̂. An orthonormal

physical basis satisfying

ı̂3 j
:̂¼ k̂, j

:̂
3 k̂ ¼ ı̂, k̂3 ı̂ ¼ j

:̂
, (26)

is further called right-handed.

Equations (26) of themselves do not specify physically

the vector product. The rule is hidden in the choice of how

we orient the three physical basis vectors ı̂, j
:̂
, k̂ in space

and the physical vector-product rule. Traditionally, we

choose the physical coordinate axes as they are usually

drawn and the physical vector-product rule to follow the

right-handed screw rule. What we must keep in mind,

from a geometric point of view, is that (26) do not make a

set of physical coordinate axes physically right-handed, but

rather we do by the choice of how we orient the physical

coordinate-axis vectors and how we define the physical

vector-product rule.

The notation for the scalar and vector products can be

made more compact if instead of ı̂, j
:̂
, k̂, we write ê1, ê2, ê3. We

also write e1, e2, e3 as alternate notation for the more general

i, j, k, which need not be orthonormal or even orthogonal.

We write the set of physical basis vectors in this notation as

E. Thus, if E ¼ fê1, ê2, ê3g is orthonormal, we can write in

more uniform notation

v ¼ v1ê1 þ v2ê2 þ v3ê3, (27)

and the scalar product permits the simple calculation of the

components of v as

vk ¼ êk � v, k ¼ 1, 2, 3: (28)

On the other hand, if E ¼ fe1, e2, e3g is arbitrary, we can still

write

v ¼ v1e1 þ v2e2 þ v3e3, (29)
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but the computation of the components is more compli-

cated, namely,

vk ¼ (ei 3 ej) � v
�

(ei 3 ej) � ek, k ¼ 1, 2, 3, (30)

where i, j, k are cyclic. Equation (30) reduces to (28) if E is a

right-handed orthonormal physical basis.

The orthonormality conditions of (24) and (25) can be

written more succinctly as

êi � êj ¼ dij, i, j ¼ 1, 2, 3, ð31Þ

where dij is the Kronecker symbol, defined as

dij ¼
1, if i ¼ j

0, if i 6¼ j

�
, i, j ¼ 1, 2, 3: (32)

The conditions (26) for right-handedness become likewise

êi � (êj 3 êk) ¼ �ijk, i, j, k ¼ 1, 2, 3, (33)

where �ijk is the Levi-Civita symbol, defined by

�123 ¼ �231 ¼ �312 ¼ 1, �132 ¼ �213 ¼ �321 ¼ �1, (34)

and all other entries vanish. Thus, �ijk is antisymmetric with

respect to the interchange of any two indices,

�ijk ¼ ��jik ¼ ��ikj ¼ ��kji, i, j, k ¼ 1, 2, 3: (35)

We say that �ijk is totally antisymmetric. Equation (35) and the

value of �123 are sufficient to completely specify �ijk.

Equations (26) are equivalent to

êi 3 êj ¼
X3

k¼1

�ijkêk, i, j ¼ 1, 2, 3: (36)

The Column-Vector Representation
We write the column-vector representation Ev of the physical

vector v with respect to the physical basis E, as

Ev �
v1

v2

v3

2
64

3
75 ¼

Ev1

Ev2

Ev3

2
64

3
75, (37)

where vi (less ambiguously, Evi), i ¼ 1, 2, 3, is given by (30)

(for an orthonormal basis, equivalently by (28)). We can also

write more systematically for an arbitrary basis E,

v ¼ Ev1e1 þ Ev2e2 þ Ev3e3: (38)

The space of column vectors is also a vector space, which we

denote by EV.

As a result of (31) and (33), if

u ¼ Eu1ê1 þ Eu2ê2 þ Eu3ê3 (39)

and

v ¼ Ev1ê1 þ Ev2ê2 þ Ev3ê3 (40)

are physical vectors, and E is a right-handed orthonormal

basis, then

u � v ¼
X3

i¼1

X3

j¼1

dij
Eui
Evj (41)

and

u3 v ¼
X3

i¼1

X3

j¼1

X3

k¼1

�ijk
Eui
Evj êk: (42)

Equation (42) can be rewritten in terms of the determinant as

u3 v ¼
ê1 ê2 ê3
Eu1

Eu2
Eu3

Ev1
Ev2

Ev3

�����
�����: (43)

We do not necessarily write the presuperscript for the

physical basis for a relation that is true for every basis or

when the presuperscript would encumber the notation

unnecessarily. Note that although the right-handed ortho-

normal physical basis E appears explicitly in right-hand

sides of (41) and (42), those expressions are independent of

the choice of right-handed orthonormal physical basis.

Scalar and Vector Products of Column Vectors
We define the scalar and vector products of the column-vector

representations of physical vectors so that, if Eu, Ev, and Ew are

the column-vector representations of the physical vectors u, v,

andw with respect to the same arbitrary basis E, then

Eu � Ev � u � v (44)

and

(Eu3
Ev) � Ew ¼ (u3 v) � w: (45)

Equation (45) is equivalent to

Eu3
Ev � E(u3 v), (46)

where Eu3 Ev denotes the vector product of the column-

vector representations Eu and Ev, while Eðu3 vÞ denotes the

column-vector representation with respect to the basis E of

the physical vector u3 v. Obviously, (44) and (45) must be

satisfied if the column-vector representation of the scalar and

vector products is to make sense. We note trivially also that

E(uþ v) ¼ Euþ Ev, (47)

where the left-hand side denotes the representation with

respect to E of uþ v, and

E(c u) ¼ c Eu, (48)
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where the left-hand side denotes the representation with

respect to E of c u. Equations (44)–(48) show that the opera-

tion of representation considered as a map from V, the

physical vector space, to EV, the vector space of column-

vector representations with respect to E, is a homomor-

phism [10]. This is equivalent to saying that, if V is a vector

space, then so is EV. The representation map is surjective

(onto) and, therefore, also an isomorphism [10].

In more concrete terms, if E is right-handed orthonormal,

then

Eu � Ev ¼
X3

i¼1

X3

j¼1

dij
Eui
Evj (49)

and

Eu3
Ev �

(Eu3 Ev)1
(Eu3 Ev)2
(Eu3 Ev)3

2
4

3
5, (50)

with

(Eu3
Ev)k �

X3

i¼1

X3

j¼1

�ijk
Eui
Evj, k ¼ 1, 2, 3: (51)

Explicitly,

Eu � Ev ¼ Eu1
Ev1 þ Eu2

Ev2 þ Eu3
Ev3 (52)

and

Eu3
Ev ¼

Ev2
Ev3 � Ev3

Ev2
Ev3
Ev1 � Ev1

Ev3
Ev1
Ev2 � Ev2

Ev1

" #
: (53)

If uT denotes the transpose of u, a row vector, then the scalar

and vector products of column vectors can be written as

Eu � Ev � EuTEv (54)

and

Eu3
Ev �

�Eu3
�Ev, (55)

where ½u3 � is the 3 3 3 antisymmetric matrix given (for any

3 3 1 array u) by

½u3 � �
0 �u3 u2
u3 0 �u1
�u2 u1 0

" #
(56)

or, equivalently,

½u3 �ij � �
X3

k¼1

�ijkuk, i, j ¼ 1, 2, 3: (57)

The evaluation of (55) leads to the familiar form of the com-

ponents of the vector product in (53). The row vectors also

form a vector space, which we denote by EVT. Equations (54)

and (55) permit us to write scalar and vector products of any

two 3 3 1 arrays, which may not be the column-vector repre-

sentations of physical vectors with respect to a common

basis. This can be of great practical utility in mission analysis.

The Autorepresentation
We can increase the parallelism between physical vectors

and column vectors by considering the autorepresentation of

a basis, that is, the representation of a basis with respect to

itself. Clearly, for every basis E ¼ fe1, e2, e3g, the corre-

sponding autorepresentation

EE ¼ fEe1, Ee2, Ee3g (58)

must have the values

Ee1 ¼ 1, Ee2 ¼ 2, Ee3 ¼ 3, (59)

where

1 �
1
0
0

" #
, 2 �

0
1
0

" #
, 3 �

0
0
1

" #
: (60)

Corresponding to (38), we have

Ev ¼ Ev1
Ee1 þ Ev2

Ee2 þ Ev3
Ee3

¼ Ev1 1þ Ev2 2þ Ev3 3: (61)

Equations (59)–(61) are true even if the basis E is not ortho-

normal. Despite the appearance of (60), the scalar product of

any pair of column vectors in (60) need not be the Kronecker

symbol, that is, possibly, 1 � 1 6¼ 1 and 1 � 2 6¼ 0. This unhappy

result follows from (44), namely, Eei � Eej ¼ ei � ej, and the fact

that, for an arbitrary basis E, we do not have necessarily that

ei � ej ¼ dij. Orthonormality is determined not only by the

entries in the 3 3 1 arrays of (60), but also by the rule for the

scalar product, and similarly for right-handed orthonormality

and the rule for the vector product. The column-vector basis

f1, 2, 3g, the autorepresentation of E, is orthonormal if and

only if the basis E is orthonormal, and the autorepresentation

of E is right-handed orthonormal if and only if the basis E is

right-handed orthonormal. Hence, no caret appears over Eek, 1,

2, or 3 in (58)–(61). We write the caret only if E is orthonormal.

For a non-orthonormal basis E, we need to replace the Kro-

necker symbol in the scalar product in (41) and (49) by the more

general symmetric symbol Egij � ei � ej, and the Levi-Civita

symbol in the vector product in (42) and (51) by the more gen-

eral totally antisymmetric symbol ECijk � (ei 3 ej) � ek. Equa-

tions (52) and (53) are no longer correct for a basis that is not

right-handed orthonormal. In the remainder of this work, E is

always an orthonormal basis (usually also right-handed ortho-

normal), and we write the caret (E “ek, “1, “2, “3). For an example of

an attitude application using a non-orthogonal basis, see [11].

THE TRANSFORMATION OF VECTORS

Physical Rotations
The principal object of this work is to study the transforma-

tions of vectors under rotation. Hence, in this section, the

purely algebraic must meet the geometrical and tensorial,

since rotations are geometrical transformations and the
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attitude matrix is a tensor. Since the vectors we draw are

physical vectors, we consider these first.

Let a and b be two physical vectors of the same magni-

tude (see Figure 1). Suppose that a is transformed into b by a

physical rotation (a physical rotation, because it rotates one

physical vector into another) through an angle of rotation h
about a physical axis of rotation n̂, which is a physical vector

of unit length. We seek an analytical form for this

transformation.

Euler’s theorem [12, 13] states that every physical rota-

tion leaves one direction unaltered. This direction is the axis

of rotation n̂, also called the Euler axis. Then we can write

a ¼ ak þ a?, b ¼ bk þ b?, (62)

where

ak ¼ (n̂ � a)n̂, bk ¼ (n̂ � b)n̂: (63)

By Euler’s theorem, we have

ak ¼ bk, (64)

whence,

a � n̂ ¼ b � n̂: (65)

From the Grassman identity,

a3 (b3 c) ¼ (a � c)b� (a � b)c, (66)

it follows that, for every physical vector u, that

u ¼ (n̂ � u)n̂� n̂3 (n̂3 u)

� uk þ u?, (67)

and we can write

a? ¼ �n̂3 (n̂3 a), (68)

b? ¼ �n̂3 (n̂3 b): (69)

The set fn̂, a?, n̂3 a?g is an orthogonal, but not necessar-

ily orthonormal, triad of physical vectors, which can act as a

basis for the physical vector space. Thus,

b? ¼ ca? þ sn̂3 a?: (70)

Because a?, n̂3 a?, and b? all have the same magnitude

(q in Figure 2), it follows that

c2 þ s2 ¼ 1, (71)

and we can write

c ¼ cos h, s ¼ sin h: (72)

The angle h is the angle of rotation (see Figure 1). Then

b ¼ ak þ c a? þ s n̂3 a?

¼ (n̂ � a)n̂� c n̂3 (n̂3 a)� s n̂3 (n̂3 (n̂3 a))

¼ (n̂ � a)n̂� c n̂3 (n̂3 a)þ s (n̂3 a): (73)

Applying the Grassman identity (66) to the second term

of (73) results in

b ¼ ( cos h) aþ (1� cos h) (n̂ � a) n̂þ ( sin h) n̂3 a

¼ aþ ( sin h) n̂3 aþ (1� cos h) n̂3 (n̂3 a): (74)

This result is Euler’s formula, published in 1775 [14]. The

form of (74) is essentially that of Gibbs [15]. The equation is

illustrated in Figures 1 and 2.

The Direction-Cosine Matrix
Equation (74) gives the physical rotation through the angle

h about the physical axis of rotation n̂ of the physical vector

a into the physical vector b. Of particular interest for attitude

studies is the physical rotation of the physical orthonormal

basis E ¼ fê1, ê2, ê3g, the prior basis, into another physical

n × (n × a) 

θ
n × a

b⊥

a⊥

ρ (1 – cosθ )

ρ sinθ

FIGURE 2 A physical rotation as seen in the tangent plane. h is the

angle of rotation, and n̂ the physical axis of rotation. The prior physi-

cal vector is a, and the posterior physical vector is b. The subscripts

k and ^ denote components parallel and perpendicular to n̂, respec-

tively. The quantity q is equal to jn̂3 aj.

n × (n × a) 
n

n × a

Euler Axis

θ

a

a

b

a,b

⊥

b⊥
|| ||

FIGURE 1 A physical rotation in three dimensions. h is the angle of

rotation, and n̂ the physical axis of rotation. The prior physical vector

is a, and the posterior physical vector is b. The subscripts k and ^
denote components parallel and perpendicular to n̂, respectively.
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orthonormal basis E0 ¼ fê01, ê
0
2, ê
0
3g, the posterior basis. The

transformation from the physical vector a to the physical

vector b is linear. Therefore, the same transformation of

prior physical basis vectors must lead to the corresponding

posterior physical basis vectors. Following (74), we write

ê
0
i ¼ ( cos h) êi þ (1� cos h) (n̂ � êi) n̂þ ( sin h) n̂3 êi,

i ¼ 1, 2, 3: (75)

For any two orthonormal bases E and E0, not necessarily

right-handed, the direction-cosine matrix C is defined as

Cij � ê
0
i � êj, i, j ¼ 1, 2, 3, (76)

where Cij is the (i, j) entry of the 3 3 3 matrix C. For definite-

ness we write CE
0=E (and C

E0=E
ij ) displaying the prior basis E

and the posterior basis E0 explicitly, and we can write also

n̂
E0=E

and hE
0=E . Throughout this work, C (or Cij) without a

subscript means CE
0=E (or C

E0=E
ij ).

For the case in which E and E0 are both right-handed

orthonormal bases, C is a rotation matrix. The rotation

matrix from the primary reference frame (generally, an iner-

tial frame) to the spacecraft body reference frame is called

the attitude matrix and is typically denoted by A. More gen-

erally, if E and E0 are any two right-handed orthonormal

physical bases, we say that AE
0=E is the attitude matrix of E0

relative to E. Our special interest in this work is the attitude

matrix. Therefore, we use A henceforth to denote a rotation,

and we use C when it is not certain that the two bases are

both right-handed orthonormal.

Let A be a rotation matrix. Then, substituting (75) into

(76) yields

Aij ¼ ( cos h) dij þ (1� cos h) (n̂ � êi) (n̂ � êj)
þ ( sin h) (n̂3 êi) � êj, i, j ¼ 1, 2, 3: (77)

Noting

(n̂3 êi) � êj ¼ ( “n3 “ei) � “ej ¼ “eTj ½ “n3 � “ei
¼ ½ “n3 �ji ¼ �½ “n3 �ij, i, j ¼ 1, 2, 3, (78)

leads to

Aij¼ (cosh)dijþ (1�cosh)ninj� (sinh)½ “n3 �ij
¼dij� (sinh)½ “n3 �ijþ (1�cosh)(½ “n3 �2)ij, i,j¼1,2,3: (79)

In matrix notation,

A ¼ ( cos h)I333 þ (1� cos h) “n “nT � ( sin h)½ “n3 �
¼ I333 � ( sin h)½ “n3 � þ (1� cos h)½ “n3 �2, (80)

where I333 is the 3 3 3 identity matrix given by

I333 ¼
1 0 0

0 1 0

0 0 1

2
4

3
5, (81)

and the antisymmetric matrix ½ “n3 � is defined by (56). In

terms of individual entries, (80) can be written as

A¼

cþ n2
1(1� c) n1n2(1� c)þ n3s n1n3(1� c)� n2s

n2n1(1� c)� n3s cþ n2
2(1� c) n2n3(1� c)þ n1s

n3n1(1� c)þ n2s n3n2(1� c)� n1s cþ n2
3(1� c)

2
664

3
775,

(82)

where c ¼ cos h and s ¼ sin h.

It follows from Euler’s formula (80) for the attitude

matrix that

A(� “n, � h) ¼ A( “n, h) (83)

and

A( “n, � h) ¼ A(� “n, h) ¼ AT( “n, h): (84)

From Euler’s theorem, the column-vector representation

of the axis of rotation may be with respect to either the prior

or the posterior basis, because, from (80),

E “n ¼ E0 “n: (85)

From (76), we have for the general direction-cosine

matrix,

ê
0
i ¼

X3

j¼1

C
E0=E
ij êj, i ¼ 1, 2, 3, (86)

êi ¼
X3

j¼1

C
E=E0
ij ê

0
j, i ¼ 1, 2, 3: (87)

Equations (86) and (87) describe the transformation of the

basis E into the basis E0 and the inverse transformation. It

follows from substituting (87) into (86) and vice versa that

X3

k¼1

C
E0=E
ik C

E=E0
kj ¼

X3

k¼1

C
E=E0
ik C

E0=E
kj ¼ dij i, j ¼ 1, 2, 3: (88)

From (76),

C
E=E0
kj ¼ C

E0=E
jk ¼

�
(C E

0=E)T
�
kj

, j, k ¼ 1, 2, 3, (89)

and similarly for C
E=E0
ik . Therefore, we can write in general

for the direction-cosine matrix

CCT ¼ CTC ¼ I333: (90)

It follows that

det (CCT) ¼ ( detC)( detCT) ¼ ( detC)2 ¼ 1, (91)

whence,

detC ¼ �1: (92)
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Equation (90) is the definition of an orthogonal matrix. An

orthogonal matrix with determinantþ1 is called proper orthogo-

nal, with determinant�1, improper orthogonal. We call a transfor-

mation, either of physical vectors or of column vectors, that has

an orthogonal transformation matrix an orthogonal transforma-

tion. Likewise, we may speak of proper orthogonal transformations

(rotations) and improper orthogonal transformations.

For a rotation, the determinant of the direction-cosine

matrix must be a continuous function of the angle of rotation.

Since, from (80), this determinant is necessarilyþ1 for h ¼ 0,

it follows for the case of a rotation that only the positive sign

is possible for all values of the angle of rotation. Thus,

detA ¼ þ1: (93)

It is easy to show that, given (86), for an orthogonal transfor-

mation of an orthonormal basis E into an orthonormal basis E0,
ê
0
i � ê
0
j ¼ êi � êj and ê

0
i � (ê

0
j 3 ê

0
k) ¼ ( detCE

0=E)êi � (êj 3 êk). Thus,

an orthogonal matrix carries an orthonormal basis into an

orthonormal basis and a proper orthogonal matrix carries a

right-handed orthonormal basis into a right-handed orthonor-

mal basis.

Transformation of Vector Representations
Let Ev be the column-vector representation of a physical vector

v with respect to the prior orthonormal basis E, and let E
0
v be

the column-vector representation of this same physical vector

with respect to the posterior orthonormal basis E0. Then

E0vi ¼ ê
0
i � v ¼

X3

j¼1

C
E0=E
ij êj

 !
� v ¼

X3

j¼1

C
E0=E
ij

Evj, i ¼ 1, 2, 3,

(94)

or

E0v ¼ CE
0=E Ev: (95)

Applied to the representation of a prior physical basis vec-

tor with respect to the prior physical basis, (95) yields

E0 “ei ¼ CE
0=E E “ei, i ¼ 1, 2, 3, (96)

which looks similar to

E “e0i ¼
X3

j¼1

C
E0=E
ij

E “ej, i ¼ 1, 2, 3: (97)

The characters of the right-hand sides of (96) and (97) are

very different. One displays matrix multiplication, and the

other displays multiplication of a column vector by a scalar.

Writing the column vector together with the basis of the

representation in order to avoid ambiguity is usually a good

idea. Examine the following three equations, which hold for

a rotation through an angle h about the physical axis ê3 (see

Figure 3).

E “e01 ¼ ( cos h) E “e1 þ ( sin h) E “e2, (98)

E0 “e1 ¼ ( cos h) E “e1 � ( sin h) E “e2, (99)

E0 “e01 ¼ E “e1: (100)

In different contexts, any one of these left-hand sides might

be called “e01.

For E and E0 orthonormal bases, the identity matrix can

be written as

I333 ¼
X3

k¼1

E “ekE “eTk ¼
X3

k¼1

E0 “e0k
E0 “e0Tk , (101)

and applying (96)–(97) yields

I333 ¼
X3

k¼1

E0 “ekE
0
“eTk ¼

X3

k¼1

E “e0k
E “e0Tk : (102)

It follows that

E0 “ei ¼
X3

j¼1

E0 “e0j
E0 “e0Tj

E0 “ei

¼
X3

j¼1

(ê0j � êi)E
0
“e0j ¼

X3

j¼1

CE
0=E

ji
E0 “e0j

¼
X3

j¼1

CE
0=E

ji
E “ej ¼

X3

j¼1

�
(CE

0=E)T
�
ij
E “ej: (103)

In (101)–(103) we use the fact that E “ek and E
0
“e0k, k ¼ 1; 2; 3, are

elements of the autorepresentation of E and E0, that is, the

numerical vectors “1, “2, and “3. Hence,

E “ek ¼ E
0
“e0k, k ¼ 1, 2, 3: (104)

The subscript of “ej in (103) is not a matrix index, and the multi-

plication operation is not matrix multiplication. Equation (103)

together with (87) clarifies the different signs in (98) and (99).

Alternatives Forms of the
Direction-Cosine Matrix
Let A ¼ fâ1, â2, â3g, B ¼ fb̂1, b̂2, b̂3g, and C ¼ fĉ1, ĉ2, ĉ3g be

three orthonormal bases. Then we can write the direction-cosine

ê2

ê1

ê′2

ê′1

sinθ

sinθ

cosθ

cosθ

θ

θ

FIGURE 3 A rotation in the plane. The physical vectors ê1 and ê2 are

the prior basis, and the physical vectors ê
0
1and ê02 are the posterior

basis. h is the angle of rotation, and the physical axis of rotation is

ê3, which is the same as ê
0
3 (neither shown).
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matrix of the transformation fromA toB as

C
B=A
ij ¼ b̂i � âj ¼ A “b

T

i
A “aj ¼ B “b

T

i
B “aj, i, j ¼ 1, 2, 3: (105)

Hence, noting (59),

b̂i � âj ¼ (B “aj)i ¼ (A “bi)j, i, j ¼ 1, 2, 3, (106)

where, for example, the expression between the two equal

signs of (106) denotes the i-th component of the representa-

tion with respect to B of âj. Thus,

CB=A ¼
X3

k¼1

A “akA “b
T

k ¼ A “b1
A “b2

A “b3

� �T

¼
X3

k¼1

B “akB “b
T

k ¼ B “a1
B “a2

B “a3

� �
: (107)

Because C is an orthonormal basis, it follows that

X3

k¼1

E “ckE “cTk ¼ I333 (108)

for every representation of the basis column vectors of C
with respect to a common basis E. Then

C
B=A
ij ¼ C “bTi C “aj ¼ C “b

T

i

X3

k¼1

C “ckC “cTk

 !
C “aj

¼
X3

k¼1

C “b
T

i
C “ckC “cTk

C “aj

¼
X3

k¼1

( “bi � ĉk)(ĉk � “aj)

¼
X3

k¼1

�B “ck�i�A “ck�Tj , i, j ¼ 1, 2, 3 (109)

or

CB=A ¼
X3

k¼1

B “ckA “cTk : (110)

Equation (110) bears a close resemblance to the result for the

TRIAD algorithm [5, 16] in attitude estimation.

The Rotation Vector and Infinitesimal Rotations
The column vector

h � h “n (111)

is called the rotation vector. Like the axis and angle of rota-

tion, and the attitude matrix, the rotation vector is also a

representation of the attitude. (An attitude representation is a

set of parameters from which the attitude matrix can be cal-

culated.) The most important use of the rotation vector is as

an infinitesimal quantity Dh, that is, when jDhj2 is so small

as to be insignificant compared to jDhj. In that case, we can

write the attitude matrix as

dA ¼ I333 � ½Dh 3 � þO(jDhj2)

� I333 � ½Dh 3 �, (112)

where dA indicates an infinitesimal rotation, that is, a rotation

through an infinitesimal angle Dh. Dh finds the most useful

application as an attitude correction or as an attitude error.

For h 6¼ 0, we can write

A(h) ¼ ( cos jhj)I333 �
sin jhj
jhj ½h 3 � þ (1� cos jh)j)

jhj2
hhT

¼ I333 �
sin jhj
jhj ½h 3 � þ (1� cos jh)j)

jhj2
½h 3 �2: (113)

In more detailed notation, we can write hE
0=E . One could con-

struct a physical rotation vector as hn̂, but it is not a very useful

quantity, except, perhaps, for writing expressions for the

attitude dyadic (see below) that are analogous to those for

the attitude matrix. Since there is no practical need for a

physical rotation vector, we speak generally of the rotation

vector and not of the rotation column vector.

DUAL VECTORS AND DYADICS

Dual Vectors
Let us define the physical dual vector u

y
, which is dual to the

physical vector u as the linear operator satisfying

u
y
v ¼ u � v (114)

for every physical vector v 2 V. The space Vy of physical dual

vectors is also a vector space, the dual space. The dual vector ðEuÞy

of the column vector Eu is the row vector EuT, and we have

u
y
v ¼ u � v ¼ EuT Ev: (115)

We can define a scalar product in the dual space by

u
y � vy � u � v, from which, ðuyÞyvy ¼ u

y � vy ¼ u � v, and there-

fore, ðuyÞy ¼ u. Thus, the dual vector of the dual vector is the

vector itself [9].

Dyadics
The dual vector provides a convenient notation for describ-

ing linear operators. For E an orthonormal basis, we can

write an arbitrary 3 3 3 matrix as

EF ¼
X3

i¼1

X3

j¼1

EFij
E “ei E “eTj ¼

EF11
EF12

EF13
EF21

EF22
EF23

EF31
EF32

EF33

2
4

3
5: (116)

Trivially,

EFij ¼ E “eTi EF E “ej, i, j ¼ 1, 2, 3: (117)

Note that E “ek, k ¼ 1, 2, 3, in (116) and (117) are elements of

the autorepresentation of E.

OCTOBER 2008 ß IEEE CONTROL SYSTEMS MAGAZINE 9

IE
EE

Pro
of



The matrix EF transforms under a change of basis according to

E0F ¼ CE
0=E EF (CE

0=E)T (118)

or, equivalently, according to

E0Fij ¼
X3

k¼1

X3

m¼1

CE
0=E

ik
EFkm

��
CE

0=E�T�
mj
: (119)

To see that this transformation is consistent with (116), we

insert (116) into (118) to obtain

E0F ¼
X3

i¼1

X3

j¼1

EFij
�
CE

0=EE “ei
��
CE

0=EE “ej
�T

¼
X3

i¼1

X3

j¼1

EFij
E0 “ei E

0
“eTj : (120)

Applying (103) to (120)

E0F ¼
X3

i¼1

X3

j¼1

EFij
X3

k¼1

C
E0=E
ki
E0 “e0k

 ! X3

m¼1

C
E0=E
mj
E0 “e0m

 !T

¼
X3

k¼1

X3

m¼1

X3

i¼1

X3

j¼1

C
E0=E
ki
EFij

��
CE

0=E�T�
jm
E0 “e0k
E0 “e0

T

m

¼
X3

k¼1

X3

m¼1

E0Fkm
E0 “e0k
E0 “e0

T

m , (121)

which is identical in form to (116).

We define the corresponding physical-vector-valued lin-

ear operator on the physical vector spaceV as the bilinear form

F �
X3

i¼1

X3

j¼1

EFij êiê
y
j , (122)

and therefore,

EFij ¼ ê
y
i F êj, i, j ¼ 1, 2, 3: (123)

The bilinear form in (122) is called a dyadic. The dual vector

and the dyadic make possible a parallelism between the

vector space of physical vectors and physical operators and

the vector space of column vectors and matrices, namely,

v, v
y
, F $ Ev, EvT, EF: (124)

Note that F is frame independent. EF depends on the choice

of frame (namely, E). Note also from (117) and (123) that

ê
y
i F êj ¼ E “eTi EF E “ej, i, j ¼ 1, 2, 3 (125)

for every orthonormal basis E.

To the transpose matrix EFT corresponds the conjugate

dyadic F
y

given by

F
y ¼

X3

i¼1

X3

j¼1

(EFT)ij êiê
y
j ¼

X3

i¼1

X3

j¼1

EFji êiê
y
j ¼

X3

i¼1

X3

j¼1

EFij êjê
y
i :

(126)

Similarly to the transposition of matrices, we have

(F G )
y ¼ G

y
F
y
: (127)

From (56) or (57), we can write the matrix ½Eu3 � as

½Eu3 � ¼
X3

i¼1

X3

j¼1

½Eu3 �ijE “eiE “eTj ¼ �
X3

i¼1

X3

j¼1

X3

k¼1

�ijk
Eui
E “ejE “eTk ,

(128)

and we can write the corresponding dyadic as

fu3 g ¼
X3

i¼1

X3

j¼1

½Eu3 �ijêiê
y
j ¼ �

X3

i¼1

X3

j¼1

X3

k¼1

�ijk
Euiêjê

y
k , (129)

hence,

fu3 gv ¼ u3 v: (130)

Despite the appearance of a particular basis in the central

and right-hand sides of (129), the dyadic fu3 g is independ-

ent of any representation. The identity dyadic has the form

analogous to (108)

I ¼
X3

k¼1

êkê
y
k , (131)

which satisfies

I v ¼ v (132)

for every v 2 V. Reference [1] defines dyadics in the classical

manner, without the introduction of dual vectors.

The Attitude Dyadic
The attitude matrix satisfies

AE
0=E E “ek ¼ E

0
“ek, k ¼ 1, 2, 3: (133)

A presuperscript on AE
0=E would be superfluous, because

the prior and posterior bases determine the value of the atti-

tude matrix unambiguously.

From (133), it follows that

AE
0=E ¼

X3

k¼1

E0 “ekE “eTk : (134)

We cannot construct the attitude dyadic by means of trivial

substitution of physical basis vectors for their autorepresen-

tations in (134), the procedure in passing from (116) to (122),

because the representations in (134) are not all with respect

to the same basis. We begin, therefore, by writing

E “eTi A
E0=E E “ej ¼

X3

k¼1

�E “eTi E0 “ek��E “eTk E “ej�
¼ E “eTi E

0
“ej, i, j ¼ 1, 2, 3: (135)

10 IEEE CONTROL SYSTEMS MAGAZINE � OCTOBER 2008

IE
EE

Pro
of



Noting that the autorepresentation of a basis is the same for

every basis,

E “eTi
E0 “ej ¼ (E

0
“e0i)

TE0 “ej ¼ ê
0
i � êj, i, j ¼ 1, 2, 3, (136)

and, therefore,

E “eTi A
E0=E E “ej ¼ AE

0=E
ij , i, j ¼ 1, 2, 3, (137)

as expected. Likewise, from (134) by similar reasoning

E0 “eTi A
E0=E E0 “ej ¼ AE

0=E
ij , i, j ¼ 1, 2, 3, (138)

and

AE
0=E ¼

X3

i¼1

X3

j¼1

AE
0=E

ij
E “ei E “eTj ¼

X3

i¼1

X3

j¼1

AE
0=E

ij
E0 “ei E

0
“eTj

¼
X3

k¼1

E0 “ek E “eTk ¼
X3

k¼1

E “ek E “e0
T:
k (139)

The first expression for AE
0=E in (139) follows directly from (116)

but not the second expression. These two expressions are remi-

niscent of the fact that Euler’s formula for the attitude matrix

may contain either E “nE
0=E or E

0
“nE
0=E . The third and fourth expres-

sions in (139) are special cases of (110) and (107), respectively.

It follows now from (116), (122), and (139) that the attitude

dyadic is given by

A E0=E ¼
X3

i¼1

X3

j¼1

AE
0=E

ij êiê
y
j : (140)

From (140), noting (86), we write

A E0=E ¼
X3

i¼1

êi
X3

j¼1

AE
0=E

ij ê
y
j ¼

X3

i¼1

êi
X3

j¼1

AE
0=E

ij êj

 !y

¼
X3

i¼1

êiê
0y
i ¼ ê1ê

0y
1 þ ê2ê

0y
2 þ ê3ê

0y
3 : (141)

Equation (141) should be compared to the last expression in

(139). Thus,

A E0=E ê
0
k ¼ êk, k ¼ 1, 2, 3: (142)

The attitude dyadic transforms the posterior basis into

the prior basis. The attitude matrix transforms the represen-

tation of a physical vector with respect to the prior basis into

the representation of the same physical vector with respect

to the posterior basis.

From (141)

A E00=E ¼ A E0=EA E00=E0 (143)

and

A E0=E(A E0=E)
y ¼ (A E0=E)

y
A E0=E ¼ I , (144)

in analogy with (90). Equation (143) can be compared with

the corresponding relationship forthe attitude matrix

AE
00=E ¼ AE

00=E0AE
0=E , (145)

which follows from (134). The order of multiplication for

the composition of attitude dyadics is opposite to that for

the attitude matrices.

Comparing Euler’s formula for the attitude matrix with

that for the attitude dyadic leads to an interesting result.

Here, n̂ denotes the physical rotation axis and h is the angle

of rotation. For the attitude matrix, we have

AE
0=E ¼ ( cos h) I333 þ (1� cos h) “n “nT � ( sin h)½ “n3 �, (146)

and for the attitude dyadic,

A E0=E ¼ ( cos h)I þ (1� cos h) n̂n̂
y
� ( sin h)fn̂3 g: (147)

Equation (147) follows also from rewriting (75) using the

dyadics n̂n̂y and fn̂3 g, conjugating that equation to obtain

an expression for ê
0
k
y , substituting that expression into

(141), and noting (131). (Note that there is a sign error in

(A20) of [1]).

Note that, once the attitude matrix is defined, the attitude

dyadic follows immediately from (122). One cannot define

the attitude dyadic independently of the definition of the

attitude matrix, for example, by requiring that it transform

the prior physical basis into the posterior physical basis,

without violating (125).

While the subject of this subsection is the attitude dyadic,

the results hold also for the general orthogonal transformation,

which may not be described by a proper orthogonal matrix.

Transformation of Physical Quantities
and Representations
We now have a complete parallelism between the transfor-

mation of physical bases

ê
0
k ¼ A E=E0 êk, ê

0y
k ¼ ê

y
k(A E=E0 )

y
, k ¼ 1, 2, 3 (148)

and the corresponding transformation of basis representations

E0 “ek ¼ AE
0=E E “ek, E0 “eTk ¼ E “eTk (AE

0=E)T, k� 1, 2, 3: (149)

Note the differing superscripts on the attitude dyadic and

on the attitude matrix.

The corresponding identity operators are

I ¼
X3

k¼1

êkê
y
k , I333 ¼

X3

k¼1

E “ekE “eTk : (150)

The attitude matrix is a function of the representation of the

axis of rotation with respect to prior or posterior axes. Thus,

AE
0=E ¼ A(E “nE

0=E , hE
0=E) ¼ A(E

0
“nE
0=E , hE

0=E), (151)

where A( � , � ) is the function of (146), while for the attitude

dyadic, we have simply

A E0=E ¼ A (n̂
E0=E

, hE
0=E), (152)
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where A ( � , � ) is the function of (147).

There is, however, an important difference between the

transformations mediated by the attitude dyadic and the

transformations mediated by the attitude matrix. Equations

(149) can be applied to any column vector

E0v ¼ AE
0=E Ev, E0vT ¼ EvT(AE

0=E)T: (153)

The same is not true for (148). The expression A E=E0v for a

physical vector v not closely associated with the basis E is

physically meaningless, because A E=E0 is an operator that

transforms bases. A case in which v is closely associated

with the basis E is examined below. Likewise, there is no

dyadic relationship corresponding to the matrix equation

E0F ¼ AE
0=E EF(AE

0=E)T, (154)

because the dyadic F is frame-independent. The attitude

dyadic is useful only for transforming physical bases and is

not needed for this operation, because we can write with

greater ease than (148)

ê
0
i ¼

X3

j¼1

A
E0=E
ij êj, ê

0y
i ¼

X3

j¼1

A
E0=E
ij ê

y
j , i ¼ 1, 2, 3: (155)

To see how the expression A E=E0v can be meaningful when

v is closely associated with the basis E, consider a physical

vector v, which we write in the usual manner with respect to

a right-handed orthonormal basis E as

v ¼ Ev1ê1 þ Ev2ê2 þ Ev3ê3, (156)

and therefore,

A E=E0v ¼ Ev1ê
0
1 þ Ev2ê

0
2 þ Ev3ê

0
3: (157)

A E=E0v has the same components with respect to E0 as v has

with respect to E. Let us suppose now that the basis E is a time

varying basis E(t), and that v is a time-varying physical vector

v(t), fixed and constant with respect to E(t), that is, E(t)v(t) is

constant in time. For example, v(t) might be a sensor bore-

sight fixed in a rotating rigid spacecraft with body axes E(t).

Then v(t0) ¼ A E(t)=E(t0)v(t). This example is not very different

from the transformation of physical basis vectors. Since we

ultimately need the transformed column vector rather than

the transformed physical vector, the application of the atti-

tude matrix in (153) has wider application than (148).

Vectrices
The above formalism makes possible a more intuitive

expression for the vectrix [3, 17, 18]. The vectrixV E=E medi-

ates the transformationV E=E : u! Eu according to

Eu ¼V E=Eu: (158)

In (158) we use E in the superscript of the vectrix as a

shorthand for EE. Note the different typefaces in EV and

V E=E , as well as the different superscripts.

The vectrixV E=E can be written as the bilinear form

V E=E ¼
X3

i¼1

E “ei ê
y
i : (159)

The vectrix is thus intermediate between a dyadic and a

matrix. We define the conjugate vectrix
�
V E=E�y as

(V E=E)
y ¼V E=E ¼

X3

i¼1

êi
E “eTi : (160)

The conjugate vectrix satisfies

u ¼ (V E=E)
yEu ¼V E=E Eu: (161)

The four bilinear transformation operators are summar-

ized in Table 1. The columns correspond to the domain of

the operator, either V or EV, while the rows correspond by

the image space.

For E an orthonormal basis,

F ¼V E=EEFV E=E ¼ (V E=E)
yEFV E=E , (162)

and

EF ¼V E=EFV E=E ¼V E=EEF (V E=E)
y
: (163)

We have also, for mixed bases,

V E0=E0 (V E=E)
y ¼ AE

0=E (164)

and

(V E=E)
y
V E0=E0 ¼ A E0=E (165)

Note that E ¼ EE and E0 ¼ E0E0 are the identical column-

vector basis.

The statement about the utility of the attitude dyadic

applies also to the vectrix. Despite the prominence of vectri-

ces in [3], vectrices are not of practical use.

SUMMARY AND DISCUSSION
This work has presented the development of physical vec-

tors, column vectors, row vectors, dual vectors, conjugate

dual vectors, the attitude matrix, the attitude dyadic, the

vectrix, and the conjugate vectrix. The physical vectors are

TABLE 1 Bilinear transformation operators on vector spaces.
The columns correspond to the domain of the operator, either
V or eV. While the rows correspond to the image space. V is
the physical vector space, and eV is the vector space of
column-vector representations with respect to the basis E.

� V eV
V Attitude Dyadic (Vectrix)�

eV Vectrix Attitude Matrix

12 IEEE CONTROL SYSTEMS MAGAZINE � OCTOBER 2008

IE
EE

Pro
of



the vectors of diagrams and are indispensable, therefore, for

formulating problems. The column-vector representation of

a physical vector is the vector of a measurement and also

the vector figuring in numerical computations. We cannot

do without either.

This article developed also the axis-angle representation

of rotations ð “n; hÞ and the rotation-vector representation h.

The latter is important in the description of attitude errors

and corrections. The attitude matrix can be written [1] as

AE
0=E ¼ expf�½hE

0=E
3 �g, (166)

where expf�g is the matrix exponential function [19]. Thus,

the study of attitude becomes in a sense the study of the

antisymmetric matrix ½u3� or, even more austerely, the

study of the Levi-Civita symbol. To stretch the point even

further, we might say that the study of attitude is the study

of the vector product. Further details of the axis-angle and

rotation-vector representations, as well as many other atti-

tude representations, can be found in [1].

The only use for the attitude dyadic is the transformation of

physical basis vectors, which can be carried out with greater

ease using the attitude matrix, as in (155), than with the attitude

dyadic, as in (148). Other dyadics, such as the inertia dyadic, are

useful, because they permit us to formulate equations of motion

for physical vectors in a coordinate-free manner. Dyadics are

useful, therefore, in extending the present formalism to attitude

dynamics. Having a parallelism between the attitude matrix

and the attitude dyadic is satisfying intellectually, but this paral-

lelism, as we have seen, has little practical value, as demon-

strated in the subsection ‘‘Transformation of Physical

Quantities and Representations.’’ We have presented the atti-

tude dyadic, however, not just to ‘‘complete the math,’’ but also

because the attitude dyadic and the attitude matrix are often

confused in approaches that do not distinguish between physi-

cal vectors and their representations as column vectors. Some

greater clarity is needed to dispel this confusion.

Gibbs [15] gave his version of Euler’s formula not in the

form of (74) above but in terms of dyadics. In 1901, matrices

were not used to the same degree as they are today.

The diagram seen frequently in mission support, depicting

‘‘reference’’ vectors (representations with respect to the iner-

tial frame) and ‘‘observation’’ vectors (representations with

respect to the body frame) on a single picture connected by

the attitude matrix is inherently wrong. Depicted vectors are

physical vectors and frame independent. The attitude matrix

finds no place in such a diagram. On the other hand, diagrams

depicting vectors fixed in a rotating body at different times

related by a matrix for the relative attitude between those two

times are perfectly correct. The two cases are intrinsically dif-

ferent. A failure to honor that difference can be (and has been)

the cause of sign errors in mission software.

We can, of course, make a picture of the prior and the

posterior representations of physical vectors using the

entries of each column vector to plot the representation.

Consider the case of a single physical vector v represented

with respect to the inertial frame (basis I , which we identify

with E) and with respect to the body frame (basis B, which

we identify with E0). Let us suppose that E and E0 are the

same as in Figure 3, and that the physical vector v lies in the

plane of ê1 and ê2. Then a picture of I v and Bv might look like

Figure 4. The physical rotation of the physical inertial basis

(I , which is E) into the physical body basis (B, which is E0) in

Figure 3 is clockwise by an angle h, while the ‘‘rotation’’ of

the column vector Iv into the column vector Bv in Figure 4 is

counterclockwise by the same angle h. Note that the axes of

the picture in Figure 4 are labeled x and y, because such axes

are not physical axes. The x- and y-axes of the picture cannot

correspond to directions in real space, because I v and Bv are

not directions in real space. The representations I v and Bv
correspond to the same physical direction in real space. We

could, of course, draw the inertially referenced column

y

x

Iv

θ

Bv

FIGURE 4 Two column-vector representations. Iv and Bv are the rep-

resentations of the physical vector v with respect to the inertial and

body frames, respectively. The basis of the inertial frame is the

same as E in Figure 3, while the basis of the body frame is the same

as E0 in Figure 3.

y

x

Iw

Iv

Bv

Bw

Bu

Iu

Inertial
y

x
Body

B/IA

FIGURE 5 Transformation of inertial representations to body repre-

sentations. The upper diagram shows the inertial representations of

the physical vectors u, v, and w, while the lower diagram shows the

body representations of the same physical vectors. AB=I is the atti-

tude matrix that transforms column-vector representations from the

inertial frame to the body frame.
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vectors on one picture and the body-referenced column vec-

tors on a second picture and connect the two pictures by the

attitude matrix. Such a pair of pictures, as illustrated in Fig-

ure 5, is different from the diagrams of Figures 1 and 3. Obvi-

ously, we must be careful not to confuse such pictures with

physical diagrams.

The important lessons of this tutorial are that physical vec-

tors are not column vectors, and consequently, that dyadics

are not matrices. Although physical vectors are very useful in

attitude studies, the attitude dyadic really is less so, and there-

fore, it is advantageous to convert a physical-vector formula-

tion to a column-vectors formulation early. Also, things are

not always what they seem to be at first glance. The failure of

the autorepresentation of a basis (58)–(60) to be necessarily an

orthonormal column-vector basis despite appearances is

certainly one case in point. Column vectors are not vectors in

space, and we can get into trouble if we picture column vec-

tors in a manner appropriate to physical vectors.

The present tutorial is an expansion and modification of

parts of an earlier work [1]. That work remains valid, but the

present treatment is more complete and more transparent

for the subset of [1] that is covered here. The goal of the

present article has not yet been fully attained. The task

remains to develop attitude kinematics and dynamics within

the same framework and with the same attention to detail.
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