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This paper presents practical analytical models for spin-axis attitude determination using measurements

generated by sun and Earth sensors. In particular, explicit expressions for the least-squares estimates and their

associated covariance matrices are established. The adoption of the local reference frame defined by the

instantaneous sun and Earth vectors leads to compact analytical results. These results provide a more immediate

understanding of the attitude error covariance matrix in terms of its dependence on the sun–Earth geometry. The

application of the covariance results is illustrated by using the actual geometrical in-orbit conditions of two satellites.

I. Introduction

S PIN-STABILIZATION offers an attractive and effective attitude
concept for many mission applications. The gyroscopic stability

provides inherent robustness to external disturbance torques
and additional safe modes are not required. In particular, spin-
stabilization is effective for providing pointing stability during orbit
injection maneuvers by means of high-thrust solid-rocket motors or
bipropellant engines. For example, geostationary satellites use this
strategy for the injection into geostationary orbit from a geo-
stationary transfer orbit [1]. Spin-stabilization has also been used
for the injection of deep-space probes into their heliocentric
trajectories [2].

Attitude pointing requirements during injection maneuvers are
typically of the order of 0.5–1�. A pointing error in the spin-axis
attitude during the injection leads to a postburn trajectory error,
which needs to be corrected afterwards by thrusters using onboard
propellant. Therefore, the accurate determination of the spin-axis
attitude before the execution of an injection maneuver saves onboard
resources and is beneficial for the satellite’s lifetime [1].

Sun and Earth sensors are often used to provide two independent
reference directions required by the spin-axis attitude determination
algorithm. The determination of the spin-axis attitude orientation
from the sensor measurements is typically performed on-ground by
means of a batch least-squares (LS) estimation method. Shuster [3]
published the first practical estimation techniques including the
associated covariance analyses. More recently, Markley and Sedlak
[4] presented a comprehensive method for spin-axis attitude deter-
mination. Theyuse an extendedKalmanfilterwith a seven-parameter
state vector based on angular-momentum properties and illustrate its
practical implementation for a few NASA missions. Further
information on the attitude determination and control of spinning
satellites can be found in the traditional reference book by Wertz [5]
and in the author’s survey paper [6].

The present paper summarizes a number of useful LS techniques
for the spin-axis attitude determination on the basis of sun and
Earth-sensor measurements. Results are presented for both the
attitude solutions and their associated covariance matrices. Explicit
expressions are given for the covariances in terms of the sensor mea-
surement angles and their random noise specifications. The adoption
of the local sun–Earth reference frame facilitates the interpretation of
the covariances in terms of the geometrical conditions imposed by

the Earth-sensor coverage interval, the orbital characteristics, the sun
and Earth directions, and in particular the sun–Earth angle. These
new results are useful for prelaunch mission analyses.

Finally, the application of the results is demonstrated using the
actual geometrical orbital characteristics of the orbit injections of two
satellites, i.e., NASA’s CONTOUR (2002) and ESA’s MSG-2
(2005). These two examples demonstrate the very different charac-
teristics of an interplanetary trajectory injection and a geostationary
orbit injection.

II. Attitude Measurement Equations

The “attitude” of a spinning satellite corresponds to the
“dynamical spin-axis,” which is normally defined as the unit vector
along the instantaneous angular-momentum vector. For simplicity,
we assume here that the angular-momentum vector always coincides
with the spacecraft’s body-fixed Z-axis, which is an axis of either
maximum or minimum inertia. Therefore, the nutation and coning
effects that are included in [4] are disregarded here.

For more detailed insights into the dynamics of the directional
stability of spinning rigid and flexible satellites we refer to [7].

A. Sun-Aspect Angle

The sun-aspect angle # is defined as the angle between the spin-
axis direction and the sun direction represented by their unit vectors
Z and S, respectively, see Fig. 1:

#� arccosfZ � Sg (1)

The typical sun sensor for spinning satellites has a vertical and a
skew slit. The measured sun angle # can be obtained from the time
difference between the sun’s crossings over the vertical and skew
slits, see for instance Wertz [5], section 7.1.1. The sun sensor also
provides the spin-rate knowledge from the successive sun’s crossings
over the sun sensor vertical slits.

B. Earth-Aspect Angle

The typical Earth sensor for spinning satellites has two static
pencil-beams which are mounted at the angles �i (i� 1, 2) with
respect to the spin axis as indicated in Fig. 1, see also Wertz [5],
sections 7.2.1–7.2.3. The S/E and E/S pulses refer to the instants
when the pencil-beams cross the space/Earth and Earth/space
boundaries. With the help of the spin-rate knowledge, the S/E and E/
S pulses can readily be expressed in terms of the half-chord angles �i
(i� 1, 2) as shown in Fig. 1. The �i angles are usually the raw
measurements used in the attitude determination software.

The angle � shown in Fig. 1 represents the apparent Earth radius
seen from the satellite. The Earth-aspect angle (which is also known
as nadir angle)� represents the angle between the spin-axisZ and the
spacecraft-to-Earth unit vector (or simply Earth vector) E in Fig. 1:
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���� � arccosfZ � E���g (2)

The Earth unit vector E points opposite of the instantaneous
orbital radius vector and rotates along with the satellite’s orbital
phase angle �. Its evolution over time is determined by the orbital
elements which are provided by the orbit determination.

The spherical geometry in the triangle formed by the vectorsZ,E,
and the S/E or E/S directions in Fig. 1 provides the following
nonlinear measurement equations for the two pencil-beams i� 1, 2
(see, for instance, Wertz [5], Eq. 11.7):

cos�i cos�� sin�i sin� cos �i � cos � �i� 1; 2� (3)

Equations (3) offer two implicit functional relationships for the
calculation of the Earth-aspect angle � from the fundamental half-
chord-angle measurements �i (i� 1, 2). This may be achieved, for
instance, by using a differential correction algorithmbased on a priori
attitude knowledge as was done in [2]. Explicit analytical solutions
for �i � �i��i�, i� 1, 2, are available [8,9], but they must be treated
with care because of sign ambiguities.

C. Sun–Earth Dihedral Angle

The geometry of the sun and Earth measurements shown in Fig. 1
generates another independent measurement, namely the sun–Earth
dihedral angle �, see alsoWertz [5], section 7.3. This angle is derived
from themeasurement of the time interval between the sun’s crossing
of the sun sensor’s vertical slit and the Earth sensor observing the
Earth-center crossing (which follows from the mean value of the S/E
and E/S crossing pulses). Tominimize the bias effects, the average of
the two results generated by each of the two pencil-beams should be
used in practice [2].

The spherical geometry in the triangle formed by the S, E, and Z
unit vectors in Fig. 1 produces a rather intricate nonlinear mea-
surement equation between � and the attitude Z and involves the
measurement angles # and �:

���� � arcsinfZ � �S �E�=�sin# sin��g (4)

It should be noted that both angles# and�must stay away from the
singularities for 0 and 180� in Eq. (4). This implies that the spin-axis
attitude vector should not be aligned with the sun or Earth direction.
In fact, this singularity is not just mathematical in nature but also
mechanical because, in these singularity cases, the sun (or Earth)
sensor is not able to generate the angular measurements needed for
the sun (or Earth) aspect angle calculations. Provided that also the
sun and Earth vectors are not aligned we can see that the � angle in
Eq. (4) is well defined.

For the subsequent analyses it is advantageous to use the auxiliary
angle � defined by:

� � arccosfsin# sin� sin�= sin g (5)

where the angle (with 0 �  � 180�) refers to the sun–Earth angle
shown in Fig. 2:

 ��� � arccosfS �E���g (6)

Next, we introduce the unit vectorN, which points normal to both
S and E vectors (Fig. 2):

N � �S � E�=jS � Ej � �S � E�=sin (7)

After these preliminaries it is possible to express Eq. (5) in the more
favorable form:

� � arccosfZ �Ng (8)

which has the same simple structure as Eqs. (1) and (2).

D. System of Measurement Equations

We can now describe the relationships in Eqs. (1), (2), and (8)
between the observation angles #, �, �, and the attitude vector Z in
terms of a three-dimensional linear system of equations as follows:

y �HZ (9a)

with:

y �
cos#
cos�
cos �

0
@

1
A (9b)

H �
S1 S2 S3
E1 E2 E3

N1 N2 N3

2
4

3
5 (9c)

The subscripts 1, 2, and 3 refer to the components of the respective
vectors along the coordinate axes of the adopted inertial reference
frame:

S � �S1; S2; S3�> (10a)

E � �E1; E2; E3�> (10b)

N � ��S � E�1; �S �E�2; �S � E�3�>= sin (10c)

III. Single-Frame Attitude Solution

The systemof Eqs. (9) becomes ill-definedwhen the reference unit
vectors S andE are aligned (i.e., if � 0 or 180�). Away from these
singularity conditions, the unique attitude solution can immediately
be obtained from Eqs. (9) by inverting the nonsingular matrix H:

Zsf �H	1y (11)

Fig. 1 Geometry of sun, Earth, spin-axis, and measurements #, �, �.

Fig. 2 Definition of sun–Earth angle  and N, T unit vectors.
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The vector Zsf represents the deterministic single-frame attitude
solution because all three individual measurement angles #, �, and �
should be collected at a single identical instant of time (i.e., within the
same spin revolution). Because of the measurement errors, the
resulting attitude solution Zsf does in general not have unit magni-
tude. Therefore, unit-vector normalization should be performed
subsequently, see [9,10].

An interesting and more illustrative alternative form of the single-
frame solution Zsf can be established by introducing the auxiliary
3 � 3 dimensional matrix P0 defined by:

P0 � 
H>H�	1 � 
SS> �EE> �NN>�	1 �
S21 � E2

1 � N2
1 S1S2 � E1E2 � N1N2 S1S3 � E1E3 � N1N3

S1S2 � E1E2 � N1N2 S22 � E2
2 � N2

2 S2S3 � E2E3 � N2N3

S1S3 � E1E3 � N1N3 S2S3 � E2E3 � N2N3 S23 � E2
3 � N2

3

2
4

3
5	1 (12)

It can be shown that the matrix P0 is well defined as long as H is
nonsingular.

ThematrixP0 enables us towrite the single-frame attitude solution
Zsf of Eq. (11) in a more meaningful form that shows its components
along the directions S, E, N in an explicit manner as follows:

Zsf �H	1y � P0P
	1
0 H

	1y � P0H
>y (13a)

) Zsf � P0fcos# S� cos�E� cos � Ng (13b)

The manipulations described by Eqs. (12) and (13) represent the
mechanization of theMoore–Penrose pseudoinverse of thematrixH,
which arises naturally in least-squares solutions (see also the next
section).

The solution in Eq. (13b) can best be visualized in the case when
the reference axes S, E, N are normal to each other and the attitude
vector has equal projections of

p
3=3 on each of these axes. In this

special case, all angles#,�, and � are equal to cos	1�p3=3� � 54:7�

and P0 degenerates to the identity matrix.

IV. Formal Least-Squares Attitude Solutions

A. System of Equations

In practical applications [1,2], a large batch of m sets of angular
measurements #j, �j, �j (j� 1; . . . ; m) is collected over m spin
periods. This produces the 3m-dimensional measurement vector y
and the system of equations consists of m times the three single-
frame measurement equations of Eq. (9). However, this system of
equations is overdetermined as it possesses only three unknowns,
i.e., the components of the attitude Z. Therefore, the unknown
random errors v� ��1; . . . ; �3m�> are added to the 3mmeasurement
equations of Eqs. (9) and we have:

y �HZ� v (14)

where the measurement matrix H has now the dimension 3m � 3.
This formulation enables us to determine the least-square estimate

[11] of the attitude vectorZ
 from the overdetermined system of 3m
measurement equations.

B. Straightforward Least-Squares Attitude Solution

The most straightforward LS approach considers the 3m-
dimensional vector y under the assumption that allmmeasurements
are considered to be uncorrelated and to carry identical weights. In
this case, the measurement covariance matrix is expressed as:

R� Ef�y��y�>g � Efvv>g � �2I (15)

where �2 stands for Ef�2jg, j� 1; . . . ; 3m, and I denotes the 3m �
3m identity matrix.

The least-squares estimate corresponds to the attitude solution Z


that minimizes the sum of the squares of the measurement residuals
expressed by the cost function:

J� �y 	HZ�>�y 	HZ� (16)

The optimal estimate that minimizes this cost function is written
as Z
 and can be expressed in terms of the 3m-dimensional
measurement vector y as follows:

Z
 � PH>y (17a)

with P� 
H>H�	1 (17b)

where the 3 � 3matrixP represents a generalization of thematrixP0

introduced in Eq. (12):

P�
�Xm
j�1

Pj�	1

�	1
�
�Xm
j�1

SjS>j � EjE

>
j �NjN

>
j �
�	1

(18)

The matrices Pj are defined in a similar way as P0 in Eq. (12) but
for each of the m individual reference vectors Sj, Ej, and Nj at the
successive measurement times tj (j� 1; 2; . . . ; m).

The LS estimateZ
 in Eq. (17a) can now be expressed in the form:

Z
 � P
Xm
j�1
fcos#jSj � cos�jEj � cos �jNjg (19)

The similarity between this result and the single-frame attitude
solution in Eq. (13b) is self-evident and can easily be interpreted.

The symmetric 3 � 3 covariance matrix of the attitude estimation
error�Z� Z
 	 Z in Eq. (19) can now be calculated directly from
Eq. (17a) while employing Eqs. (15) and (17b):

Ef�Z��Z�>g � PH>Ef�y��y�>gHP> � �2P (20)

This confirms that the matrix P defined in Eq. (17b) is strongly
related to the error covariance matrix of the straightforward least-
square attitude estimate Z
.

C. Uncorrelated Weighted-Least-Squares Attitude Solution

Next, we study the case when the three angular observations #, �,
and � are given different weights but are still considered to be
uncorrelated with respect to each other. In this case, themeasurement
covariance matrix R of Eq. (15) has nonzero terms only on its
diagonal, but they are different, and repeat in groups of three terms as
follows:

R� Ef�y��y�>g �

�21 0 0 0 . . . 0

0 �22 0 0 . . . 0

0 0 �23 0 . . . 0

0 0 0 �21 . . . 0

..

. ..
. ..

. ..
.

. . . ..
.

0 0 0 0 . . . �23

2
66666664

3
77777775

(21)

The cost function for the weighted-least-squares (WLS) problem
is usually expressed as:
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J� �y 	HZ�>W�y 	HZ� (22)

where the weighting matrix W corresponds to the inverse of the
measurement covariance matrix defined in Eq. (21), i.e.,W � R	1.

The WLS estimate of the attitude vector can be established
similarly as in Eqs. (17):

Z
 �QH>R	1y (23a)

with : Q� 
H>R	1H�	1 (23b)

ThisWLS attitude estimate can readily be expressed in the following
explicit form:

Z
 �Q
Xm
j�1

�
cos#j
�21

Sj �
cos�j
�22

Ej �
cos �j
�23

Nj

�
(24)

which represents an obvious generalization of the result established
in Eq. (19).

The error covariance matrix Q of the estimate Z
 defined in
Eq. (23b) can be written in the following explicit form:

Q�
�Xm
j�1

�
SjS

>
j

�21
�

EjE
>
j

�22
�

NjN
>
j

�23

��	1
(25)

The correspondence between the results of Eq. (25) and the less
general result in Eq. (18) is self-evident.

The efficient and practically useful least-squares solutions for the
spin-axis attitude and its covariances presented in Eqs. (24) and (25)
were first established by Shuster in [3], Eqs. (45). A more recent
paper [10] presents many additional results, in particular for
enforcing the unit-vector constraint of the attitude vector.

D. General Weighted-Least-Squares Attitude Solution

The general weighted-least-squares problem considers measure-
ments that not only carry different weights butmay also be correlated
to each other. The general error measurement matrix takes the form:

R� Ef�v��v�>g �

�21 �12 �13 . . . �1;3m
�21 �22 �23 . . . �2;3m
�31 �32 �23 . . . �3;3m

..

. ..
. ..

.
. . . ..

.

�3m;1 �3m;2 �3m;3 . . . �23m;3m

2
666664

3
777775 (26)

This represents a symmetric 3m � 3mmatrix because �jk � �kj for j,
k� 1; 2; . . . ; 3m.

The optimal attitude estimate Z
 and its covariance matrixQmay
formally be established by means of the relationships given in
Eqs. (23). However, these results would become more complicated
because the measurement covariance matrix R in Eq. (26) induces
nondiagonal terms in the state covariance matrix Q. Therefore,
attractive explicit analytical expressions like those in Eqs. (24) and
(25) cannot be established in the general case.

V. Covariances of Sun–Earth Sensor Measurements

In this section we determine and analyze the elements of the
general error covariance matrix R defined in Eq. (26) for typical sun
and Earth sensor measurements while accounting for the actual
correlations between thesemeasurements. Equation (4) suggests that
the errors in the sun–Earth dihedral angle �would be correlated with
those of both the sun- and Earth-aspect angles # and �. However, the
actual algorithmic processing of the fundamental sensor crossing
pulses should be taken into account when calculating the mea-
surement covariances.

The sun and Earth sensors use different hardware measurement
devices and different processing approaches. Therefore, the random
measurement errors of the sun-aspect angle # are uncorrelated from

those of the Earth-aspect angle measurement and the correlation
terms between the angular measurements # and � can be expected to
vanish. This is indeed confirmed by the result of the covariance
matrix in Eq. (39) of [9]. Similarly, although not as obvious, also the
correlation terms between the angular measurements � and � vanish,
see Eq. (39) of [9]. On the other hand, however, Eq. (39) of [9] shows
that the correlation terms between the # and � angular measurements
do not vanish.

We now proceed to calculate the covariances of the observation
vector y in terms of the errors of the angular measurements #, �, and
�. First, we establish the error propagation from the angular
measurements to the vector y by using Eq. (9b):

�y � F
�#
��
��

0
@

1
A (27a)

with : F�
	 sin# 0 0

0 	 sin� 0

f1 f2 f3

2
4

3
5 (27b)

The functions fj are defined by:

fj � gj= sin �j� 1; 2; 3� (28)

with:

g1 � cos# sin� sin� (29a)

g2 � sin# cos� sin� (29b)

g3 � sin# sin� cos� (29c)

The angle  refers to the sun–Earth angle defined in Eq. (6) and
shown in Fig. 2. The expressions in Eqs. (27–29) show a singularity
for  ! 0, 180� corresponding to the situations when the sun and
Earth vectors become aligned. In these cases, thematrixH in Eq. (9c)
becomes singular and a unique attitude solution cannot be
established.

We assume that measurements taken at different instants of time tj
and tk (j ≠ k) are independent. Therefore, correlations can only
occur for the three angular measurements taken at the same instant tj
for j� 1; 2; . . . ; m.

When executing the covariance transformation from the angles #,
�, and � to the vector y at each measurement instant tj
(j� 1; 2; . . . ; m) we find that the 3m � 3m matrix R in Eq. (26)
contains the following m times 3 � 3 nonzero blocks around its
diagonal:

R3�3 � Ef�y��y�>g �
�21 0 �13
0 �22 �23
�13 �23 �23

2
4

3
5 (30)

The entries in this matrix depend on the measurement angles #, �, �,
and their covariances and can be calculated from Eqs. (27–29):

�21 � �2# sin2# (31a)

�22 � �2� sin2� (31b)

�23 �G2
3=sin

2 (31c)

�13 �	G13=sin (31d)

�23 �	G23=sin (31e)

with:

G2
3 � g21 �2	 � g22 �2� � g23 �2� � 2g1g3 �#� (32a)
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G13 � �g1 �2# � g3 �#�� sin# (32b)

G23 � g2 �2� sin� (32c)

Finally, the attitude covariance matrix Q defined in Eq. (23b)
should be expressed in terms of the elements of the general
measurement covariance matrixR3�3 in Eq. (30). First, the inverse of
the measurement covariance matrix R3�3 can be established as:


R3�3�	1 �
1

D

��2�3�2 	 �223 �13�23 	�13�22
�13�23 ��1�3�2 	 �213 	�23�21
	�13�22 	�23�21 ��1�2�2

2
4

3
5 (33)

where D is the determinant of the covariance matrix R3�3. It may be
noted that D represents the volume of the three-dimensional
covariance ellipsoid:

D� f��1�2�3�2 	 �223�21 	 �213�22g (34)

This expression for D confirms that the correlation terms of the
derived measurements y1 and y2 with respect to y3 reduce the size of
the measurement covariance ellipsoid.

When substituting the results of Eqs. (31) and (32) into Eq. (33)we
obtain:


R3�3�	1 �
1

Ds2

�G3�2�2 	 G2
23 G13G23 sG13�

2
2

G13G23 �G3�1�2 	 G2
13 sG23�

2
1

sG13�
2
2 sG23�

2
1 ��1�2�2

2
4

3
5
(35)

with:

s� sin (36a)

D� f�G3�1�2�2 	 G2
23�

2
1 	 G2

13�
2
2g=s2 (36b)

This result shows that the size of the measurement covariance
matrix is minimal when the sun–Earth angle  � 90�. On the other
hand, the volume grows without bounds when the sun and Earth
directions approach alignment, i.e., when  ! 0 or 180�.

Afterward, the state covariance matrix Q may be calculated from
the expression in Eq. (23b), at least in principle, by using the
knowledge of theHmatrix in Eq. (9c). It is evident that the analytical
calculations become intimidating at this stage. Therefore, a different
approach will be pursued in the next section.

VI. Attitude Estimation in Local Frame

A. Background and Motivation

The results presented in Eqs. (24) and (25) represent explicit
analytical expressions for the attitude estimate and its covariance
matrix in terms of the inertial representations of the S, E, and N
reference unit vectors. These expressions are valid in the special case
when themeasurement covariance matrix is diagonal as illustrated in
Eq. (21). As concluded in the previous section, it is much more
tedious to establish the explicit analytical results for the general
measurement covariance matrix in Eq. (26).

In any case, the general covariance results established above
cannot immediately be interpreted in terms of their geometrical
singularities. More informative insights may be found by repre-
senting the attitude vector and themeasurement equations in terms of
the local orthogonal coordinate frame defined by the orthogonal unit
vectors S, T, N shown in Fig. 2.

The orthogonal rotation matrix A from the inertial frame to the
local coordinate frame is defined as follows:

S
T
N

0
@

1
A

Local

� A
X
Y
Z

0
@

1
A

Inertial

with: A�
S1 S2 S3
T1 T2 T3
N1 N2 N3

2
4

3
5 (37)

The inverse matrix A	1 � A> represents the inverse coordinate
transformation.

It is important to note that the local reference frame defined by the
S, T, N unit vectors does not remain fixed in inertial space. The sun
vector moves about 1� per day, so that the maximum deviation in the
sun position is about �0:02� from the central value for a one-hour
batch of sensor data. Therefore, the motion of the sun vector may be
neglected for short data intervals of up to 1 h.

The Earth vector, on the other hand, moves much faster because it
rotates along with the orbital radius vector. When considering a
geostationary satellite, for instance, the rate of change of the Earth-
vector is as much as 15� per hour. This means that deviations in the
Earth-vector position would reach the limit of�0:02� already at the
beginning and end of a 10-s interval of sensor data.

Nevertheless, a satellite with a spin-rate of 60 (or 100) rpm
generates a batch of 10 (or 16) independent measurements within a
10-s interval. Furthermore, after each 10-s interval we may update
(i.e., rectify) the S, T, and N reference axes and the associated
transformation matrix A. Therefore, by using this strategy, it is
possible to keep the errors for large batches of data (consisting of a
sequence of 10-s intervals) within acceptable limits.

Regardless of the practical issues that need to be taken into account
when employing the local coordinate frame for attitude deter-
mination, our most important motivation for the adoption of this
frame is to gain deeper insights into the characteristics of the attitude
determination singularities that are hard to evaluate within the
common inertial formulation.

B. Measurement Equations

We introduce the attitude vector z in terms of its components along
the local coordinate axes:

z � �z1; z2; z3�> � z1S� z2T� z3N (38)

The system of measurement equations in Eqs. (9) can now be
replaced by the simpler system:

y �
cos 	
cos�
cos �

0
@

1
A� h z1

z2
z3

0
@

1
A (39a)

with : h�
1 0 0

cos sin 0

0 0 1

2
4

3
5 (39b)

This result indicates that the local measurement matrix h depends
only on the instantaneous sun–Earth angle  .

The inverse of the matrix h can readily be calculated as:

h	1 � 1

sin 

sin 0 0

	 cos 1 0

0 0 sin 

2
4

3
5 (40)

which explicitly shows the singularity in the casewhen ! 0, 180�

in the first two terms of the second row of h	1. In these cases, the sun
and Earth vectors are aligned so that the first two measurement
equations are no longer independent.

C. Single-Frame Attitude Solution

The single-frame attitude solution zsf in the local S, T, N frame
shown in Fig. 2 can readily be established in explicit form by
employing the inverse matrix h	1 in Eq. (40):

zsf � h	1y �
cos 	

�cos� 	 cos cos 	�=sin 
cos �

0
@

1
A (41)

This result confirms the presence of the singularities in the second
component of the attitude solution zsf for  ! 0, 180�. Also we see
that, in the special case when  � 90�, the single-frame attitude
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solution zsf in Eq. (41) becomes identical to the measurement vector
y. This special case may also be visualized from the sun–Earth
geometry shown in Fig. 2.

It is of interest to establish the equivalent of the alternative single-
frame solution presented in Eqs. (12) and (13). Thereto, in analogy
with the matrix P0, we first introduce the auxiliary matrix p0 as
follows:

p0 � 
h>h�	1 �
1 	c=s 0

	c=s �1� c2�=s2 0

0 0 1

2
4

3
5 (42a)

with:

c� cos ; s� sin (42b)

It can be confirmed by explicit calculation that the single-frame
solution in Eq. (41) may also be written in the form:

zsf � p0h
>y � p0

cos#� c cos�
s cos�
cos �

 !
(43)

which represents the counterpart of Eq. (13b) in the inertial case. In
the special case when � 90� the result in Eq. (43) degenerates into
zsf � y as expected.

D. LS Local Attitude Solutions

The straightforward LS estimate z
 can also be calculated from the
batch of measurement data in a similar way as was done in Eqs. (17)
and (18):

z
 � ph>y (44)

with:

p�
�Xk
j�1

pj�	1

�	1
�
�Xk
j�1

h>j hj�

�	1
(45)

The index k in Eq. (45) takes the place of the index m used in
Eq. (18) of the inertial formulation. It represents the upper index of
the sequence of measurement data collected at tj (j� 1; 2; . . . ; k,
with k� m in general) within the 10-s interval during which the
adopted local coordinate frame remains valid.

The matrices pj (j� 1; 2; . . . ; k) are defined similarly as in
Eq. (42a) at each of the sampling instants tj. However, because the
sun and Earth positions are kept fixed during each 10-s data interval,
all matricespj (j� 1; 2; . . . ; k) are identical during the short interval
under consideration, so we can write:

pj � 
h>h�	1 �
1 	c=s 0

	c=s �1� c2�=s2 0

0 0 1

2
4

3
5 for j� 1; 2; . . . ; k

(46)

This leads to a very compact and attractive result for thematrixp in
Eq. (45):

p�
�Xk
j�1

pj�	1

�	1
� 1

k

h>h�	1 � 1

k
p0 (47)

The local LS attitude estimate z
 in Eq. (44) takes the place of the
inertial attitude estimateZ
 in Eq. (17a). The covariancematrix of the
estimate z
 can readily be calculated and the result equals the product
of the angular measurement covariance �2 and the matrix p in
Eq. (47) similarly as in Eq. (20).

The local results presented here are more compact than the inertial
formulations in Eqs. (17) and (18). Also they have the advantage that
the measurement and covariance matrices remain constant over the
short intervals considered here.

E. General LS Local Attitude Solutions

In the most general case, the attitude covariance matrix q of the
local WLS attitude estimate is introduced to replace the matrix Q
defined in Eq. (23b). This matrix can be expressed in terms of the
measurement covariance matrix R in Eq. (30), while using the
simpler expressions for the h and h	1 matrices defined in Eqs. (39b)
and (40). The explicit result for q takes the form:

q� 
h>R	1h�	1

� 1

k

�21 	c�21=s 	G13=s

	c�21=s ��22 � c2�21�=s2 �cG13 	 G23�=s2

	G13=s �cG13 	 G23�=s2 G2
3=s

2

2
64

3
75 (48)

The determinant of thematrixq represents the volume of the three-
dimensional covariance ellipsoid associated with the expected
attitude error and can be calculated as:

det�q� � f�G3�1�2�2 	 G2
23�

2
1 	 G2

13�
2
2g=�ks4� �D=�ks2� (49)

It follows that the determinant D of the covariance matrix q as a
function of the sun–Earth angle is identical (apart from the factor
1=k) to the determinant of the measurement covariance matrix R3�3
as can be seen from Eqs. (34) and (36b).

As usual, it is possible to simplify the attitude covariancematrix in
Eq. (48) by introducing a coordinate transformation to principal axes.
This simplifies the structure of the matrix q in the sense that the off-
diagonal terms vanish and only the diagonal nonzero terms (i.e., the
eigenvalues ofq) remain.However, the calculation of the eigenvalues
of q in Eq. (48) is fairly daunting and provides little additional useful
information.

F. Expected Attitude Determination Error

It is interesting and useful to interpret the mathematical results for
the covariances in terms of the expected attitude (determination)
error, i.e., the difference between the estimated and actual attitude
pointing directions.

The expected attitude error �att is defined as:

�att � Efj�Zjg (50a)

) �att �

�������������������������������X3
k�1

Ef��Zk�2g

vuut (50b)

This result follows from the application of Jensen’s inequality to the
concave square-root function and provides a convenient conservative
upper bound for the expected attitude error.

Similarly, the attitude error may also be written in terms of its
components along the local reference frame defined by the S, T, N
unit vectors. When recalling the definition of the attitude covariance
matrix in Eq. (48) we can express the expected attitude error �att in
terms of the elements of the covariance matrix q as follows:

�att �
�����������������
trace�q�

p
(51)

where trace q denotes the sum of the diagonal terms of matrix q.
When substituting the elements of q in Eq. (48) we find:

�att �
1

sin 

��������������������������������������
f�21 � �22 �G2

3g=k
q

(52)

This result reveals the explicit dependence of the attitude error on the
sun–Earth angle in terms of the nature of the singularity for ! 0
and 180�.

VII. Application to Real Missions

We illustrate the covariance results established above for two
actual satellite missions, i.e., CONTOUR [2,9], andMSG-2 [8] with
very different orbit and attitude characteristics.
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A. CONTOUR Application

In the case of CONTOUR, precise attitude determination was
required for the injection (by means of a solid-rocket motor) from its
Earth-phasing orbit into a heliocentric trajectory inAugust 2002. The
perigee and apogee distances were about 200 and 116,000 km,
respectively, and the orbital period was almost 42 hours. Because the
injection was performed at perigee, the spin-axis attitude orientation
was close to the perigee velocity vector. The Earth sensor’s pencil-
beams had simultaneous Earth coverage over the altitude range from
about 45,000 to 60,000 km starting from about 15 hours after apogee
passage.

The most suitable interval for collecting sensor data for attitude
determination purposes occurswhen the Earth sensor’s pencil-beams
scan the Earth’s rim in the midlatitude region defined in [2] and this
interval is about 1 h in duration.

Table 1 summarizes the variations of the geometrical angles over
the relevant one-hour interval. The spin-axis attitude can be taken
constant over this short period and is given by its right ascension
(RA) and declination (DE) angles. The sun-aspect angle # and the
dihedral angle � also remain essentially constant, but the sun–Earth
angle  and the Earth-aspect angle � vary by about 3–4�.

Thevariation of the expected attitude error of Eq. (52) as a function
of the sun–Earth angle  is illustrated in Fig. 3. This shows that the
minimum expected error occurs for  � 90� as expected.

The input values used in Fig. 3 are calculated from the random
error model established in [9], i.e., �# � 0:0026�, �� � 0:014�,
�� � 0:0061�, and �#� � 0:1. The results are not at all sensitive to
variations in the correlation coefficient �#� of the # and �
measurements.

The one-hour interval of collected sensor data used in Table 1 is
relatively favorable in terms of the expected attitude error as it is far
away from the singularities at  � 0 and 180�.

B. MSG-2 Application

The second case studied is the METEOSAT Second Generation
(MSG-2) satellite during its near-geostationary drift phase in

December 2005, see also [8,9]. The MSG satellites have a spin-axis
attitude orientation that points close to the orbit-normal. This means
that the Earth-aspect angle remains near 90� (i.e., within a fraction of
a degree) and the Earth sensor’s pencil-beams have continuous Earth
coverage throughout the orbit.

The Earth sensor’s pencil-beams continuously scan the Earth’s rim
in the midlatitude region [8] so that full-day intervals of sensor data
may be selected for attitude determination purposes. The spin-axis
attitude can be taken constant over the 24-hour period and is specified
in Table 2 in terms of its RA and DE angles. Table 2 also gives the
boundaries of the relevant angles over this one-day period. As in
Table 1, the variations of the sun- and Earth-aspect angles are
relatively minor, but the variations of the sun–Earth angle  and the
dihedral angle � are much larger in this case.

The behavior of the expected attitude error in Eq. (52) as a function
of the sun–Earth angle  is illustrated in Fig. 4. Although the
evolution of the attitude error may look identical to the one shown in
Fig. 3, the very different geometry has been accounted for. As in the
previous example, the minimum expected error occurs at � 90� as
expected. The range of the sun–Earth angle variations is almost 132�

and ismuch larger than in the CONTOURcase. This is due to the fact
that the Earth sensor has continuous coverage during the 24-hour
period geostationary orbit.

The input values used here are calculated from the random error
model presented previously [9] and are slightly different from the
CONTOUR case, i.e., �# � 0:0022�, �� � 0:015�, �� � 0:0061�,
and �#� � 0:1.

Although the attitude determination interval ismuch longer than in
CONTOUR’s case, the expected attitude error remains favorable
because the sun–Earth angle keeps a good distance away from the
singularities at  � 0, 180� throughout the one-day interval.

Finally, it should be noted that the attitude errors in Figs. 3 and 4
are calculated by using only one measurement (i.e., k� 1). When
using larger data batches, we can essentially eliminate the random
noise effect. In practice, however, unknown biases have a much
more severe effect on the attitude error than random errors have, see
also [12].

Table 1 Range of angles over one-hour interval

of sensor data (CONTOUR)

Angle Initial value, deg Final value, deg

Spin-axis attitude (constant) RA� 258:6; DE� 29:2
Sun-aspect angle # 104.07 104.07
Earth-aspect angle � 64.23 60.06
Sun–Earth dihedral angle � 36.69 36.69
Sun-–Earth angle  53.51 56.45

Fig. 3 Expected attitude error as function of the sun–Earth angle (CONTOUR).

Table 2 Variation of angles over selected interval

of sensor data (MSG-2)

Angle Initial value, deg Final value, deg

Spin-axis attitude (constant) RA� 83:8; DE� 86:5
Sun-aspect angle # 115.56 116.46
Earth-aspect angle � 93.50 86.50
Sun–Earth dihedral angle � varies over full 360� range
Sun–Earth angle  24.13 (min) 155.8 (max)
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VIII. Conclusions

The paper establishes useful least-squares estimates and covari-
ances for spin-axis attitude determination from sun- andEarth-sensor
measurements. The use of the local reference frame defined by the
instantaneous sun and Earth directions leads to a better under-
standing of the attitude determination error as a function of the sun–
Earth angle. The results are illustrated using the actual conditions of
two orbiting satellites.
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