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a b s t r a c t

We study the directional stability of rigid and deformable spinning satellites in terms of

two attitude angles. The linearized attitude motion of a free system about an assumed

uniform-spin reference solution leads to a generic MGK system when the satellite is

rigid or deformable. In terms of Lyapunov’s stability theory, we investigate the stability

with respect to a subset of the variables. For a rigid body, the MGK system is

6-dimensional, i.e., 3 rotational and 3 translational variables. When flexible parts are

present the system can have any arbitrary dimension. The 2�2 McIntyre–Myiagi

stability matrix gives sufficient conditions for the attitude stability. A further

development of this method has led to the Equivalent Rigid Body method. We propose

an alternative practical method to establish sufficiency conditions for directional

stability by using the Frobenius–Schur reduction formula. As practical applications we

discuss a spinning satellite augmented with a spring–mass system and a rigid body

appended with two cables and tip masses. In practice, the attitude stability must also be

investigated when the spinning satellite is subject to a constant axial thrust. The generic

format becomes MGKN as the thrust is a follower force. For a perfectly aligned thrust

along the spin axis, Lyapunov’s indirect method remains valid also when deformable

parts are present. We illustrate this case with an apogee motor burn in the presence of

slag. When the thrust is not on the spin axis or not pointing parallel to the spin axis, the

uniform-spin reference motion does not exist and none of the previous methods is

applicable. In this case, the linearization may be performed about the initial state. Even

when the linearized system has bounded solutions, the non-linear system can be

unstable in general. We illustrate this situation by an instability that actually happened

in-flight during a station-keeping maneuver of ESA’s GEOS-I satellite in 1979.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since the beginning of the space age, the issue of
spin stability has received a great deal of attention. While
Sputnik-1 rotated about its maximum axis of inertia [1],
the first American satellite, Explorer-1 was designed to
spin about its minimum-inertia axis. Its subsequent ‘flat

spin’ motion after only one orbit was a complete surprise
to the satellite designers. The Explorer-1 experience
motivated a great deal of research on the stability of
spinning spacecraft. The history of the understanding
of the spin-stabilization concept is described by Barbara
and Likins [2], and Hall [3]. Eventually, the maximum-
inertia rule for ensuring spin stability under energy
dissipation became well established and many commer-
cial and scientific satellites have utilized this technique
successfully.

In this paper we use the term ‘attitude’ for the
‘stabilized direction’ which refers to the pointing direction
of the spin axis. Hughes [4] proposes the alternative term
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‘directional stability’. Both of these designations are
commonly used by researchers in the field of spinning
satellites. When dealing with three-axis stabilized satel-
lites, attitude refers to the orientation of an orthogonal
triad of unit vectors or reference axes (see [5, Chapter
12]). The attitude of a spinning satellite, however, consists
of only two parameters, i.e., the right ascension and
declination angles that define the unit vector of the
stabilized direction. For the sake of completeness, we
mention that the spin-axis attitude may be time-varying
because of nutation or due to spin-axis tilt (i.e., dynamic
imbalance). In this case, only the direction of the angular
momentum is constant and the attitude refers to the fixed
direction of the angular momentum.

Ideally, we would like to study the spin-stability issue
with the help of Lyapunov’s direct method, which is
applicable to the general class of non-linear systems
described by _x ¼ f ðx,tÞ. This method offers a statement on
stability without having to integrate the equations of
motion. However, it does require an exact reference
solution of the non-linear system as well as a sign-
definite function which always follows from the first
integrals of the system.

Lyapunov’s original work was published in English in
1992 on the occasion of its 100th birthday in [6]. The
method can also be found in many textbooks, for instance
in [7]. Schaub and Junkins [8] formulate the Lyapunov
method in the framework of control theory.

For a summary of Lyapunov’s work we highly recom-
mend the forty pages in Appendix A of Hughes [4]. He
describes in detail the transition from the general
Lyapunov theory to the attitude stability of spinning
satellites addressed here. In spite of its generality,
Lyapunov’s direct method is not immediately applicable
to a spinning satellite, rigid or flexible. This is because we
are not interested in the stability of the full state vector x

but only in the stability of the two attitude parameters.
A completely free spinning satellite system is always
unstable in the sense of Lyapunov.

For our problem of attitude stability, the reference
motion of the non-linear system is a pure spin about a
principal axis of the system. When the system is modeled
as a rigid spinner, this motion is possible for any value of
the spin rate. The presence of flexible appendages
introduces additional deformation variables. A pure spin
motion is still possible in terms of a rotating equilibrium
configuration, called a ‘rigidified’ system, which is obvious
when the system has sufficient symmetry. In general,
however, the location of the Center of Mass (CoM) and the
directions of the principal axes of a ‘rigidified system’
must be found by solving a two-point boundary value
problem.

Significant progress in the investigations of attitude
stability was achieved by McIntyre and Miyagi [9]. They
established a 2�2 stability matrix by applying Lyapunov’s
direct method to a general set of linearized equations for a
rigid spinner augmented with flexible parts. Their method
produces a sufficient condition for attitude directional
stability. Because they use Lyapunov’s direct method,
a derivation of the linearized equations of motion is not
needed. This is an essential benefit because this is a

tedious task even when only simple deformable parts are
studied (e.g., pendulum, partially restrained particle).
An important application of their method is the influence
of fluids on the directional stability. Their interpretation
that the stability results can be understood as a con-
sequence of a shift in balance evolved further into the
concept that is best known as the ‘Equivalent Rigid Body’,
see Damilano [10]. The most important applications of
both methods are for liquids.

In this paper we start with the linearized equations
which have the well-known MGK structure (see
[4,11,12]). When viscous damping is added to the system,
the generic form of the linearized equations will take the
MGDK form. We just mention here that, in contrast to a
generic MK system, the necessary and sufficient stability
conditions cannot be formulated in terms of matrix
properties. The only attractive result is a sufficiency
criterion for instability obtained by Hagedorn [13].

In practice, we often use Lyapunov’s indirect method
(i.e., the eigenvalue problem) for a general MGK system
because the investigation of attitude stability is only a
prerequisite for a full dynamic analysis. We show a
systematic reduction on the attitude variables using
the Frobenius–Schur formula for partitioned matrices.
The resulting 2�2 matrix is precisely the stability matrix
obtained by McIntyre and Myagi [9]. For illustration, we
present two fairly straightforward examples of MGK
systems with nonetheless considerable practical rele-
vance. The first one considers a rigid body appended with
two cables and the second one deals with a rigid body
augmented with a mass-spring system. This model serves
as a starting point for describing a nutation damper. The
use of generalized coordinates provides a useful check
because the linearized equations must have the correct
generic format.

In practical applications we have also to deal with
stability under thrusting. Because the thrust is a follower
force, the generic format of the problem becomes an
MGKN system. We analyze a rigid body augmented by a
mass particle, which is nominally located on the spin axis
but is free to move around. This is a simplification of
the model used by Mingori and Yam [14] to investigate
the instability of the PAM-D upper stage (i.e., the slag
model).

When the thrust is not on or along the spin axis, an
exact solution of the full non-linear equations is not
known even for a single rigid body and Lyapunov’s direct
method is not applicable. In this case, we may perform a
linearization based on an initial state whose validity is
limited in time. The stability of these linear equations
does definitely not imply the stability of the non-linear
system. We illustrate this by an example that occurred in
practice on ESA’s GEOS-I satellite in 1979 when a station-
keeping maneuver was performed using a single axial
attitude thruster pointing in the direction of the desired
delta-V (see [15]). Although the linearized equations have
only bounded solutions, a higher-order perturbation
analysis reveals an instability that causes a rapid despin
of the satellite in the case of GEOS see also [16]. This
prediction was verified by an experiment when GEOS-I
had reached its end of life. When also cables are present,
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as was the case in GEOS-I, the stability result remains
essentially the same.

2. MGK system for a free spinning satellite

2.1. Pure-spin reference motion

The attitude motion of a spinning system, rigid or
deformable, can be described by a non-linear system of
equations. For a free rigid body, this system consists of
the Euler equations completed by the non-linear differ-
ential equations relating the angular velocity to the
chosen attitude variables. The deformable parts require
supplementary equations. We assume that the non-linear
equations possess the uniform pure-spin solution o1=
o2=0, o3=O=constant. In this motion, the system rotates
uniformly as a rigid body with static deformations of the
flexible and/or deformable parts. This configuration is
called ‘rigidified configuration’ or ‘equilibrium configura-
tion’ and its mass properties must be identified a priori.
This pure-spin solution is the reference solution for all
applications considered here. The attitude is studied in
the ‘equilibrium frame’ (in short, E-frame) with its origin
at the CoM of the rigidified configuration. The axes of the
E-frame are aligned with the principal axes of the
rigidified configuration. The E-frame rotates at a constant
rate O about the z-axis which coincides with the angular
momentum vector H=CO where C is the moment of
inertia of the rigidified configuration about the z-axis.

When the system has sufficient symmetry it is
straightforward to determine the mass properties of the
equilibrium configuration. In general, however, this may
involve solving a non-linear equilibrium problem to
obtain the location of the CoM, the total principal inertias,
and the reference values of the deformation variables
when all deformable parts of the system are at their
equilibrium locations.

2.2. Attitude angles

The spin-axis attitude refers to the orientation of the
z-axis of the rigidified configuration. The small deviations
of the attitude within the E-frame can be represented by a
linear model in terms of the three small rotation angles
{y1, y2, y3}, see Fig. 1. This set of angles forms a {1-2-3}
Euler sequence of small rotations and is also known as the

Tait–Bryan angles. The spin-axis attitude stability is
described by the two angles {y1, y2} which are called the
‘attitude variables’.

Because the angles {y1, y2, y3} are first-order quantities,
their sequence has no relevance. The rotation matrix R from
the E-frame to the instantaneous body frame can be written
as

R¼

1 y3 �y2

�y3 1 y1

y2 �y y

2
64

3
75 ð1Þ

2.3. MGK system of equations

Using Eq. (1) we obtain a set of second-order
differential equations for the rotational motion in terms
of the state vector q=(y1, y2, y3, qd)T, see [3,4,11]

M €qþG _qþKq¼ 0 ð2Þ

where qd is the set of deformation variables which vanishes
in the rigidified configuration. Eq. (2) is the standard format
of a linear conservative MGK system with matrices
M=MT40, G=�GT, and K=KT. When the deformations
couple to the translations of the rigid body, we have to
include the 3 translational degrees of freedom of a rigid
body and the state vector becomes: (x, y, z, y1, y2, y3 qd)T. In
general, the dimension of the matrices may take an arbitrary
value n as the deformation variables are included in the
state vector.

We also introduce the dynamic stiffness matrix Z

Zq¼ 0 with ZðpÞ ¼Mp2þGpþK ð3Þ

where a time dependency ept with ps= + iO is introduced
in Eq.(2). The corresponding characteristic equation is

det½ZðpÞ� ¼ 0 ð4Þ

This is a polynomial equation in p of degree 2n where n

is the order of the matrices and contains only even powers
of p. Because the matrices M, G, and K are real, the
complex roots of Eq. (4) occur in conjugate pairs. When all
roots are on the imaginary axis, i.e., pj= 7 ioj, the
solutions combine to harmonic functions and the system
is oscillatory stable (grenzstabil). The eigenvectors corre-
sponding to 7 ioj are conjugate complex. The multiplicity
of an eigenvalue is not a problem provided that the
number of independent eigenvectors equals the multi-
plicity.

As an example, for a rigid body these 3�3 matrices are

M¼

A 0 0

0 B 0

0 0 C

2
64

3
75; G¼O

0 �a 0

a 0 0

0 0 0

2
64

3
75;

K ¼O2

C�B 0 0

0 C�A 0

0 0 0

2
64

3
75 ð5a2cÞ

where a is defined as a=A+B�C and A, B, C are the
principal inertia’s of the body which equal the rigidified
system inertias.

Eq. (2) is quite general and includes singular cases. This
can be illustrated by means of Eqs. (5), which indicate that
the variable y3 is completely decoupled from the twoFig. 1. Tait–Bryan angle rotations.
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attitude variables y1 and y2. This causes an instability
called a ‘rigid mode’. The presence of y3 makes the K

matrix semi-definite positive. The physical interpretation
is that the rigid body may spin about its z-axis at any spin
rate of the reference solution. Therefore, if it spins at
O0aO, the angle y3 would change linearly in time, which
corresponds to an instability in the sense of Lyapunov.

For the complete non-linear system, the Lyapunov
functions required for the direct method are not known,
not even for a single rigid body. They are only available for
the Euler equations in the angular velocities [4,7]. So, we
have always to deal with Lyapunov’s indirect method as
the MGK systems follow from a linearization about a
reference solution. If the MGK formulation represents
truly the physical system, its stability may be investigated
with Lyapunov’s direct method. In fact, for such systems
there is a systematic method to construct quadratic
Lyapunov functions by solving the Lyapunov matrix
equation, see [7,11]. In the case of a MGK(N) system,
Lyapunov’s indirect method is not able to confirm the
stability of the non-linear system. Only when the
linearized system is asymptotically stable (which implies
damping) it is possible to confirm the stability of
the reference solution of the non-linear system (see
[4,Theorem A15]).

2.4. Attitude stability regions

As an application of Lyapunov’s indirect method, we
discuss the characteristic equation corresponding to
Eqs. (3) and (5), namely the rotational degrees of freedom
of a rigid body. The characteristic equation (see Eq. (4))
leads to the sixth-order polynomial equation for the
attitude angles

p2ðp2þO2
Þ p2þO2 ðC�AÞðC�BÞ

AB

� �
¼ 0 ð6Þ

The roots p=0 correspond to the rigid mode of the y3 angle
discussed above. The roots of the last part of Eq. (6) define
the nutation frequency. They are on the imaginary axis
only when the conditions C4A, B or CoA, B are satisfied.

Fig. 2 shows a diagram with axes x=A/B and y=C/B. All
possible rigid bodies are in an infinite strip along the first
diagonal (A, B, C40) and each is at most the sum of the
other two. The region K40 characterizes a rotation about
the maximum axis. The region Ko0 is a rotation about
the minimum axis and is also stable. In the two remaining
regions K is not sign-definite. (A different presentation is
given by the so-called Smelt-plane, see Hall [3] and
Hughes [4], where the axes are y=(B�A)/C, x=(B�C)/A
and all possible bodies are contained within the rectangle
71, 71.)

The roots of the middle part of Eq. (6), i.e., p= 7 iO,
are a consequence of the choice of variables y1, y2. The
interpretation of these roots is that the angular momen-
tum can spin (stably) about a direction that differs
from the z-axis of the E-frame which is its original
direction. This change of the direction of angular mo-
mentum is discussed at length by Barbara and Likins [2]
and Hughes [4]. Strictly speaking, this mode represents
an attitude instability but it shows up as a stable mode. In

the common meaning of ‘attitude stability’, this mode
may be disregarded.

2.5. Influence of damping

In the case when the addition of damping makes the
linearized system asymptotically stable, the non-linear
system will also be asymptotically stable, see [4, Theorem
A15]. To illustrate this theorem we include viscous
damping by adding terms d1

_y1, and d2
_y2 with d1, d2Z0

to Eqs. (5).
When d1, d240, the matrix D=DT=diag{d1, d2} is

positive definite. When adding this matrix D to the
matrices in Eqs. (2) we obtain a MGDK system. The
theorem of Thomson–Tait states ‘‘in the case when D40
and det(K)a0, the stability of the MDGK system follows
from the stability of the MK system’’, see [11].

When assuming D40, the Thomson–Tait conditions
are satisfied for a satellite spinning about its maximum
inertia as well as about its minimum-inertia axis. For the
maximum axis we have K40 which is a sufficient
condition for stability and the stability is guaranteed.
For the minimum-inertia spin axis, the K matrix is
negative definite and we cannot conclude immediately.
The assumption D40 is very restrictive and can be
replaced by: ‘‘a D matrix such that the damping is
pervasive’’, see [11]. This means that the damping is such
that it affects all the modes of the system.

As an example, we take the D matrix as diag{d1,0}.
When considering a body with inertias A, B, C={50, 75,
100}, the characteristic equation for the variables y1, y2 is
given by the fourth-order polynomial (after normalization
for O=1)

ðp2þ1Þðp2þ1=3Þþpd1ð3p2þ2Þ=150¼ 0 ð7Þ

Fig. 3a and b show the evolution of the four roots as
functions of d1. When the satellite is spinning about its
maximum-inertia axis the nutation frequency is O/O3

Fig. 2. Stability regions.
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(see Fig. 3a). Both frequencies (of the four roots) have
negative real parts as expected. The horizontal departure
of the spin frequency on the imaginary axis implies that,
up to second order, the spin axis returns to its initial
direction.

Fig. 3b shows the evolution of the roots for the case
when the same body is initially spinning about its
minimum axis with the body inertias A, B, C={100, 75,
50} and the determinant equation

ðp2þ1Þðp2þ1=6Þþpd1ð3p2�2Þ=300¼ 0 ð8Þ

In this case, the nutation frequency is O/O6 and both
frequencies have now positive real parts and the body will
proceed to go into a flat spin. Thus, we have now
established numerically the stability properties of the
attitude of spinning rigid bodies, including damping, by
means of Lyapunov’s indirect method.

3. Attitude stability of a free spinning satellite

In practice, we are only interested in the variables y1

and y2 that define the ‘attitude stability’, i.e., stability in
terms of a subset of the system variables. When the
stability theorems are applied to the full MGK system, the
results are of course also valid for the attitude. We present

a method that provides stability results for the spin-axis
attitude variables y1 and y2 while using only the 2�2
matrix. In the rigid-body model that was presented in
Eqs. (3) the reduction to the two attitude variables is
straightforward because the variable y3 as well as the
translation variables are completely decoupled from y1

and y2. It suffices to simply ignore their equations of
motion to arrive at the 2�2 equations for y1 and y2.

3.1. Frobenius–Schur reduction

In order to establish the general procedure for this
reduction, we start from the dynamic stiffness matrix Z(p)
given in Eq. (3). We recall that Z (p=0) is equal to the
matrix K. Eqs. (5b,c) indicate that the matrices G and K can
be highly singular in practical applications. When the
matrix K40 the system is called ‘statically stable’, see
[4,11].

In order to separate the attitude variables from the
deformation variables we partition the vector q in two
parts, i.e., qT=[q1

T, q2
T], so we write Eq. (3) as

Z11q1þZ12q2 ¼ 0; Z21q1þZ22q2 ¼ 0 ð9a;bÞ

Now we can eliminate q2 by writing

q2 ¼�Z1
22Z21q1 ) ½Z11�Z12Z1

22Z21�q1 ¼ 0 ð10a;bÞ

After substituting q1=(y1, y2)T in Eq. (10b) we can
formulate the condition for ‘static stability’ in terms of the
2�2 matrix ZR (p) as

ZR ¼ ½Z11�Z12Z1
22Z21� ) ð11aÞ

ZRð0Þ ¼ KR ¼ ½K11�K12K1
22K21�40 ð11bÞ

The matrix ZR is known as the ‘Frobenius–Schur
reduction formula’ for partitioned matrices, see [17]. It
assumes that no external forces are acting on the
eliminated variables.

The expression in Eq. (11b) contains the inverse of the
matrix K22 which may in fact not exist in a specific
practical application. When this happens, the product
K12K�1

22 K21 remains well defined and becomes 0 when the
equations represent a physical system. The final result
KR=K11 is then identical to the matrix which would turn
up by simply deleting the equations belonging to the
eliminated variable(s). Instead of applying the Frobenius–
Schur reduction formula to the Z matrix, we may also use
it directly on the K matrix. This is apparent because of the
resemblance of the matrices of Eqs. (10b) and (11b).

When applying the above reduction procedure to the
matrix in Eq. (5c) we find the static stability condition

KR ¼O2 C�B 0

0 C�A

� �
40 ð12Þ

This means that the well-known maximum-inertia
condition represents a sufficient condition for attitude
stability. Thus, the matrix KR, which follows from the
linearized equations of rigid-body motion in MGK format,
provides the stability condition for the 2�2 system of the
attitude variables y1 and y2.

Fig. 3. (a) Stabilization about maximum-inertia axis. (b) Stabilization

about minimum-inertia axis.
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3.2. McIntyre–Miyagi model

The pioneering paper by McIntyre and Myagi [9], or
M&M in short, establishes a 2�2 stability matrix by
applying Lyapunov’s direct method to a general linearized
system with flexible parts.

The stability theory of M&M starts with the diagonal
matrix K0=diag{C�B, C�A}. The moments of inertia A, B, C

represent the ‘rigidified’ principal system inertias. The
matrix K0 can thus be seen as the counterpart of the
matrix K11 in KR of Eq. (11b).

We introduce now the M&M notations that allow us to
compare their results with our matrix KR in Eq. (11b).
Their derivation considers the 3�3 system inertia matrix
J=[Jij] as a function of the deformation variables qd.
A Taylor expansion of the system inertia matrix in terms
of qd obviously has diag{A, B, C} as the leading term. In
general, the higher-order terms of the matrix elements
Jij(qd) are non-zero and we introduce the derivatives of the
inertia terms as in M&M, Eqs. (20)

ai ¼
@J13

@qd,i
; bi ¼

@J23

@qd,i
ð13a;bÞ

Their derivation shows that the only second derivative
needed is the one of the spin moment of inertia J33. It
appears in the matrix G which is defined by the following
quadratic form:

qT
dGqd ¼ J2

33 ð1Þ=C�J33 ð2Þ þ2U ð2Þ=O
2

��������� ð14Þ

where (1) and (2) denote the order of the derivative with
respect to qd, O is the nominal spin rate, and U is the
elastic potential energy of the deformations.

With these definitions we can write the stability
matrix given in M&M, Eq. (24), in the form

KM&M ¼ K0�Cd ð15aÞ

with

Cd ¼
bT

aT

" #
G�1 b

�a

� �
¼

bTG�1b �bTG�1aT

aTG�1b aTG�1a

" #
ð15bÞ

The symmetric 2�2 matrix Cd contains the correction
terms that must be subtracted from the matrix K0 in order
to arrive at the M&M stability matrix KM&M which has the
same structure as the matrix KR in Eq. (11b). In practice,
the matrix KM&M is identical to the matrix KR as our
examples in a later section will illustrate. The sensitivity
coefficients defined in Eqs. (13) provide a physical
interpretation in terms of a ‘variation in inertias’ which
is not at all obvious when these terms are just seen as
coefficients of the linearized equations of motion.

Furthermore, the M&M approach allows the interpre-
tation that the only physical mechanism that can produce
unstable behavior in a passively spinning flexible body is
the changing balance. M&M refer to the existence of the
matrix G�1 as the ‘structural integrity condition’. The
derivation by reduction in Eq. (11b) shows that a
singularity in G may also be caused by a decoupling of
one or more of the deformation variables from the
attitude variables. In this case the corresponding compo-
nents of a and b would vanish.

It is important to note that the M&M stability
condition can be calculated without having to establish
the equations of motion. This is because the elements of
the matrix Cd represent the sensitivity coefficients of the
system inertia relative to the deformations. Indeed, this
interpretation represents a crucial advancement in our
understanding. In particular, it allows the investigation of
attitude stability when liquids represent the deformable
parts, i.e., the concept of ‘wobble amplification’ (see [19]).
In practice, it is rarely straightforward and often proble-
matic to establish reliable models for coupling the
equations of motion of fluids to a rigid body.

3.3. Equivalent rigid-body model

The M&M interpretation of the static attitude stability
as the reaction of the system to an assumed shift in
balance (i.e., inertia matrix) was further developed in the
Equivalent Rigid Body (ERB) approach, see for instance
[10]. As in the M&M approach, the ERB model starts with
the ‘rigidified’ principal system inertias J0=diag{A, B, C}.

Now we imagine that the deformable system has its
spin axis about the axis n within the body frame

n¼ ða, b, gÞT ð16Þ

where a and b are small angles with respect to the ideal

spin axis of a ‘perfect’ satellite and g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2�b2

q
. The

inertia matrix of the deformed system changes to J(n)
which is close to J0. The new spin moment of inertia I can
be expressed in the components of n by means of Eq.

(16).We retain only up to second-order terms in a, b so we
have

I¼ nT½J�n¼ ða,b,gÞ
J11 J12 J13

J12 J22 J23

J13 J23 J33

2
64

3
75

a
b
g

0
B@

1
CA� ð17aÞ

� J33þ2aJ13þ2bJ23þ

þa2ðJ11�J33Þþb
2
ðJ22�J33Þþ2abJ12 ð17bÞ

The rotational energy E= IO2/2 of the deformed system
can now be calculated as

E�
O2

2

J33þ2aJ13þ2bJ23þ

þa2ðJ11�J33Þþb
2
ðJ22�J33Þþ2abJ12

( )
ð18Þ

A well-known theorem (see [18, p. 124]) states that
the condition for stability corresponds to the minimum
of the rotational energy for a given angular momentum.
The equilibrium position occurs when J13= J23=0 and the
minimum is reached for J334max(J11, J22). This result
confirms the ‘maximum-inertia rule’ for a rigid body.

Next, we expand the elements Jkl (k, l=1, 2, 3) of the
matrix J in a second-order Taylor series about a=b=0

Jkl � J0,klþ

a @Jkl

@a þb
@Jkl

@b

þ
a2

2

@2Jkl

@2a
þ
b2

2

@2Jkl

@2b
þab @

2Jkl

@a@b

8>>>><
>>>>:

9>>>>=
>>>>;

ð19Þ

After substituting these terms into Eq. (17b), we
rearrange the rotational energy in Eq. (18) in first-and
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second-order contributions in the small parameters a and
b, i.e., E=IO2/2EE1+E2 with

E1 ¼
O2

2
J0:33þ2aðJ0:13þ J�13Þþ2bðJ0:23þ J�23Þ
� 	

ð20aÞ

E2 ¼
O2

2

a2ðJ0:11þ J�11�J0:33Þþ2abðJ0:12þþ J�12Þ

þb2
ðJ0:22þ J�22�J0:33Þ

( )

¼
O2

2
a,b

 � A�Cþ J�11 J�12

J�12 B�Cþ J�22

" #
a
b

" #
ð20bÞ

J�13 ¼
1

2

@J33

@a
; J�23 ¼

1

2

@J33

@b
ð20c;dÞ

J�12 ¼
@J13

@b
þ
@J23

@a þ
1

2

@2J33

@a@b ð20eÞ

J�11 ¼ 2
@J13

@a þ
1

2

@2J33

@2a
; J�22 ¼ 2

@J23

@b
þ

1

2

@2J33

@2b
ð20f ; gÞ

Eq. (20b) shows that the minimum of E is guaranteed
when the matrix

K�
C�ðAþ J�11Þ �J�12

�J�12 C�ðBþ J�22Þ

" #
ð21Þ

is positive definite. When recognizing that the angles a, b
correspond to y2 and �y1, respectively, we can see that
this result is consistent with Eq. (12).

The ERB formulation does not express the underlying
dependency on the deformation variables in explicit
terms. In practice, the method is mainly used to
investigate the influence of liquids on the stability. This
is done numerically by solving the equilibrium problem
with internal loops on the deformation variables. Analy-
tical results in terms of the satellite’s physical parameters
are not provided. We also point out that both the ERB and
M&M methods make use of the fact that the relevant part
of the rotational energy is a quadratic form.

Damilano [10] also provides Jij
n terms representing the

influence of a thruster misalignment. We show in our last
example below that this application of the ERB method is
incorrect: a uniform spin is in general not an exact
solution of the non-linear system in these circumstances.

4. Examples of attitude stability for free systems

In the applications presented here we deal only with
the sufficient stability condition KR40 which has the
most practical relevance. In spite of extensive theoretical
research [19,20], the exact necessary and sufficient
conditions for an MGK system are not known in terms
of matrix properties.

4.1. Rigid body augmented by spring–mass system

As the first application, we consider a rigid body
augmented with a spring–mass system in a tube. This
was one of the very first models used to investigate
the influence of deformable parts on the attitude
stability for the use as nutation damper. We do not add

a damping term because the stability limit is independent
of damping.

We introduce a spring–mass system {ms, k} parallel to
the z-axis and located at the position (0, b, 0)T with a small
displacement x along the x-axis, see Fig. 4. The equations
for q=(y1, y2, x)T are of the MGK type (see [4] and [20])
with the matrices defined by

M¼

Aþmsb2 0 msb

0 B 0

msb 0 msm=M

2
64

3
75; G¼O

0 �a 0

a 0 0

0 0 0

2
64

3
75
ð22a;bÞ

K ¼O2

Cþmsb2�B 0 msb

0 C�A 0

msb 0 k

2
64

3
75 ð22cÞ

where a=A+B�C, M=m+ms (with ms5m). The origin of
the coordinate frame coincides with the CoM of the total
system and the axes are the principal axes of the
combined system with the spring–mass at the rest
position (x=0) as shown in Fig. 4. We note that C is taken
as the spin inertia of the rigid body.

The reduction of K gives

KR ¼O2 Cþmsb2�B�
m2

s b2

k
O2 0

0 C�A

2
4

3
5 ð23Þ

This expression is in agreement with the stability
result given by Hughes [4] who established it by using the
Routh–Hurwitz criterion for the roots. In fact, a spring–
mass with damping d was added by Hughes [4] but this
does not affect the stability limit.

The stability condition can be written as

C4B�msb
2ð1�O2=o2

s Þ with o2
s ¼ k=ms ð24Þ

where os is the frequency of the mass–spring system.
In order to analyze this problem by means of the M&M

model, we start with the total inertia matrix at equili-
brium

J¼

Jxx ¼ Aþmsðb2þx2
Þ 0 0

0 Jyy ¼ Bþmsx
2 Jyz ¼msbx

0 Jyz Jzz ¼ Cþmsb2

2
664

3
775
ð25Þ

where x is the deformation variable. We can evaluate
the elements Jij with the help of the partials as in Eqs. (13)
and (14)

@2Jzz

@x2

����
x ¼ 0

¼ 0 ð26aÞ

Fig. 4. Rigid body with spring–mass system.
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a1 ¼
@Jxz

@x

����
x ¼ 0

¼ 0; b1 ¼
@Jyz

@x

����
x ¼ 0

¼msb ð26b2cÞ

U ¼
1

2
kx2
)

@U

@x2

����
x ¼ 0

¼ k ð26dÞ

Thus, we obtain for the elements cij of the correction
matrix Cd

c11 ¼ bTG�1b; c12 ¼ c21 ¼ c22 ¼ 0 ð27a;bÞ

with

G¼�
1

2

@2JzzðqÞ

@q2

����
q ¼ 0

þ
2

O2

@2UðqÞ

@q2

����
q ¼ 0

ð27dÞ

Finally, we find for the non-zero element c11 of Cd

c11 ¼m2
s b2O2=k ð28Þ

This produces the same stability condition as given in
Eqs. (24) but without using the equations of motion. The
full non-linear equations were investigated by Chinnery
and Hall [21], in particular within the unstable domain.
The complexity of the possible motions is surprising.

4.2. Rigid body appended with two cables

The second application considers the equations for a
rigid body appended with two mass-less cables and two
tip masses. This model has been used extensively in the
1970s for scientific satellites. The cables are attached at
the height of the spacecraft CoM at a distance a from the
nominal spin axis (z) and on the y-axis. Fig. 5 shows
the yz-plane with the vertical deflection angles yi (i=1, 2).
The tip mass is denoted by mT. Each of the two cables has
the fixed length l. The system contains also two equatorial
deflection angles ci in the xz-plane which are not
considered in this example.

When splitting the equatorial and vertical deflection
angles into their symmetric and anti-symmetric parts, we
can see that the equatorial symmetric deflections couple
to the attitude motion only when the attachment point is
not at the height of the CoM. The equatorial anti-
symmetric deflections modulate the spin rate, i.e., the
so-called ‘spin ripple’ mode, but do not affect the spin-axis
attitude. The vertical symmetric deflection angles couple
only to the translations. Therefore, we consider here only
the vertical anti-symmetric deflections which are denoted
by the small angle yA, see Fig. 5. (If we include the other
three deformation variables, we get into the situation
described in the M&M section, i.e., G�1 is singular but the
non-zero elements of a, b couple only to its non-singular
elements.)

The corresponding 3�3 matrices of the system of
equations for the variables qT=(y1, y2, yA)T are

M¼

AþAT 0 ic

0 B 0

ic 0 2mT l2

2
64

3
75; G¼O

0 �a 0

a 0 0

0 0 0

2
64

3
75 ð29a;bÞ

k¼O2

C�BþCr 0 ic

0 C�A 0

ic 0 ic

2
64

3
75 ð29cÞ

with

a¼ AþB�C; AT ¼ CT ¼ 2mT ðaþ lÞ2; ic ¼ 2mT lðaþ lÞ

ð30a2cÞ

We can now calculate the KR matrix and the sufficient
conditions for attitude stability as

KR ¼O2 C�BþCT�ic 0

0 C�A

� �
ð31aÞ

C4A; C4B�CTþ ic ¼ B�2mT aðaþ lÞ ð31b; cÞ

The result in Eq. (31c) shows that only a part, i.e., 2mTa

(a+ l), of the inertia moment of the tip masses CT is
effective for the stability of the rigid-body inertia term C.

Note also that C does not necessarily have to be the
maximum-inertia axis. Concerning the system’s moment
of inertia Cs=C+CT, we find that its stability is degraded
because Cs must not only exceed B=Bs but also B+ ic.
Finally, we mention that the term 2mTa(a+ l)O2yA repre-
sents the torque acting on the rigid body for the deflection
angle yA.

In order to apply the M&M method we introduce the
small angle approximation for yA and find the results

Jzz ¼ 2mT ðaþ l�ly2
A=2Þ2 � 2mT ðaþ lÞ2�2mT lðaþ lÞy2

A ð32aÞ

Jxy ¼ Jxz ¼ 0) a1 ¼ 0 ð32bÞ

Jyz ¼�mT lðaþ lÞyA ) b1 ¼�2mT lðaþ lÞ ð32cÞ

c11 ¼�2mT lðaþ lÞ; c12 ¼ c21 ¼ c22 ¼ 0 ð32d; eÞ

The result for c11 is consistent with the definition of ic,
see Eqs. (30c) and (31c).

Finally, we note that the two identical cables do not
change the direction of the principal axes of the rigid
body. However, if the cables are not at the same height as
the CoM of the body, their vertical offset relative to the
CoM of the system differs from the offset to the rigid-body
CoM. The calculation of the new CoM, mass and inertia’s is
straightforward in this case.

In the failure case when only one cable has been
deployed, the study of the equilibrium configuration in
terms of the static deflection angles and new inertias is
extremely complex. In case of a vertical offset of the
attachment point of the cables, the symmetrical horizon-
tal deflections couple to the attitude motion and the offset
will be included in the stability condition.Fig. 5. Rigid body with two cables.
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5. Stability of MGKN systems

In practice, we must also assure the stability of a
satellite while thrusting. The results of the previous
sections, which are based on a torque-free satellite, are
not applicable in this situation. A body-fixed thruster is a
typical example of a follower force and the generic form of
the linearized equations changes from MGK to MGKN
where N is an anti-symmetric matrix. In practice this
means that the constant matrix of the dynamic stiffness
matrix is a general matrix which can always be split in
symmetric and anti-symmetric parts. The most important
physical difference is that MGKN systems are not
conservative and can have a type of instability (flutter
instability) that does not exist in conservative systems.

We present below two applications of a spinning
satellite subject to a constant axial thrust. In the first
example, the thrust is delivered by an apogee or perigee
kick motor. In practice, these are solid rocket motors or
liquid propellant engines. Such a motor or engine is, in
principle at least, aligned with the nominal (i.e., geo-
metric) spin axis. When all alignments are perfect, the
thrust force will be exactly aligned with the actual (i.e.,
dynamic) spin axis and no torque acts on the satellite. In
this ideal case, the CoM is accelerated and the uniform
spin about the major or minor inertia axis remains the
exact solution of the rotational motion. Therefore, the
directional stability is the same as that of a free rigid body.

The nature of the mass and inertia variations during
these burns are important. In the case of a liquid apogee
engine, the propellant is guided to the satellite spin axis,
which causes a spin-up of the satellite because the fuel’s
angular velocity decreases. In fact, the liquid propellant
transfers its angular momentum to the body. In the case
of a solid rocket motor, on the other hand, the gases swirl
to the spin axis and maintain their angular momentum.
Thus, there are no spin effects at all as predicted by van
der Ha and Janssens [22] and as confirmed in practice.

In both applications we neglect mass variations even
though these variations are important in the first example,
i.e., the fourth-stage burn of the PAM-D/Ulysses combina-
tion. The second example deals with a North-South station-
keeping maneuver using an axial thruster in continuous
mode on ESA’s GEOS-I satellite in 1979. This model is also
representative of an axial thruster that fails open.

5.1. Rigid body with axial thrust and particle on spin axis

We consider a particle on the spin axis of a symmetric
satellite that is free to move in a plane perpendicular to
the spin axis, see [23]. In this case, the axial acceleration,
which is assumed to be constant, couples to the rotational
motion. However, a uniform spin with the particle at rest
still is an exact solution of the system. This example
represents a simplification of the model used by Mingori
and Yam [14,24] where the particle is connected to the
spin axis by a radial spring to investigate the stability
problem of the PAM-D series of apogee motors (under the
accumulation of slag in an imbedded nozzle).

Within the E-frame, the thrust direction is variable since
the thruster is body-fixed. The linearized equations of a

model including such a follower force have the MGKN
format where N represents the circulatory (anti-symmetric)
matrix, see [11]. The derivation of these equations is very
tedious and the final results (without spring) are as follows:

M¼

Au 0 0 �mh

0 Au mh 0

0 mh mð1�mÞ 0

�mh 0 0 mð1�mÞ

2
66664

3
77775 ð33aÞ

G¼O

0 �ð2Au�CÞ �2mh 0

ð2Au�CÞ 0 0 �2mh

2mh 0 0 �2mhð1�mÞ
0 2mh 2mhð1�mÞ 0

2
66664

3
77775
ð33bÞ

K ¼O2

C�Au 0 0 mðhþg=2O2
Þ

0 C�Au �mðhþg=2O2
Þ 0

0 mðhþg=2O2
Þ �mð1�mÞ 0

�mðhþg=2O2
Þ 0 0 �mð1�mÞ

2
666664

3
777775

ð33cÞ

N¼
mg

2

0 0 0 1

0 0 �1 0

0 1 0 0

�1 0 0 0

2
6664

3
7775 ð33dÞ

The following input parameters are being used here:
q=(y1, y2, x1, x2)T is the state vector, where x1 and x2 are
the particle’s equatorial coordinates; A0=Ab+mh2 is the
transverse moment of inertia with respect to the CoM of
the system; Ab is the transverse body inertia relative to the
CoM of the body; M is the body mass, m is the particle
mass, and m=m/(m+M); h is the vertical coordinate of the
particle with respect to the CoM of the system; l=h/(1�m)
is the coordinate of the particle relative to the CoM of the
body; C is the spin inertia of the body and the system; O is
the spin rate; g is the thrust acceleration, i.e., F/(m+M).

Because the system is not conservative, the reduction
method and the stability matrix cannot be used here. The
only method available is to require that the roots of the
characteristic equation are lying on the imaginary axis.
This leads to the condition

mgð�lÞrC2O2=ð4AbÞ ð34Þ

Eq. (34) provides a useful model for evaluating the
instabilities experienced during the firings of the PAM-D
boost motors in the 1980s. In particular, it was applied for
checking the PAM-D stability during the injection of the
ULYSSES satellite. In this application, the mass m refers to
the maximum permissible slag mass that may accumulate
within the PAM-D nozzle. Specific numerical values can be
found in Ref. [23]. In reality, the actual slag mass during the
ULYSSES injection is not known. No instability occurred
during the injection but this may be due to the addition of
an active control system on the PAM-D motor. Fig. 3 of Yam
et al. [24] provides a stability curve T0 (b), where T0 is a non-
dimensional quantity (defined in their Eq. (29)) and b is
proportional to the spring constant k. The stability limit for a
zero spring constant is T0 (0)=�1/4. We note that Eq. (34)
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also shows that lo0 at the stability limit. This result implies
that there is a limit to how far the particle may be located
behind the CoM of the body.

When the intermediate variables occurring in T0 are
replaced by physical parameters (using their Eqs. (11),
(15), (16), (22), and (24)) we find that T0(0)=�1/4 is the
same as in Eq. (34). When the criterion in Eq. (34) was
derived by Janssens [23] it was thought that k=0 was the
worst case for the stability limit.

However, Fig. 3 of Yam et al. [24] shows that, for small
values of k, the distance that the particle may be behind the
CoM shrinks and vanishes when k reaches the value such that

ores-k ¼osðC=AbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=ðMþmÞ

p
ð35aÞ

where

os ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

q
ð35bÞ

When ores-k reaches about 1.6 times the value of os

and the stability domain is the same as k=0.
The paper shows that the region where the undamped

system is not unstable contains stable and unstable parts
when dissipation is included. This is in line with the sufficient
criteria given in [11] for the stability of MDGKN systems. All
these highly mathematical criteria contain the D matrix. They
are not well suited for practical applications and in practice
one studies the roots of the characteristic equation.

5.2. Rigid body with axial thrusting and transverse torque

In the final example we consider a force vector that
generates a transverse torque. The force may be produced
by an apogee boost motor that is not perfectly aligned
with the spin axis or by an axial thruster offset from the
spin axis. In both cases, a constant non-zero perturbation
torque t=(tx, ty, tz)

T is acting and the uniform pure-spin
solution no longer satisfies the Euler equations

A _o1þðC�BÞo2o3 ¼ tx

B _o2�ðC�AÞo1o3 ¼ ty

C _o3þðB�AÞo1o2 ¼ tz ð36Þ

This problem is known as the ‘self-excited’ rigid body
and has considerable practical relevance. In the case when
all three torque components are present, there exists a
stationary rotation if the torque components satisfy tx ty

tzo0, see [25]. This stationary rotation has a unique fixed
value for the angular velocity which is pointing perpendi-
cular to both the torque direction and the angular
momentum. Unfortunately, Eqs. (36) do not have a known
analytical solution so we cannot linearize about it.

If only one non-zero torque component is present, a
uniform spin solution exists in the plane perpendicular to
the torque. When assuming a nominal spin about the
z-axis (with small o1 and o2) the angular velocity makes
an angle b relative to the z-axis in the y, z-plane when a
torque tx is applied (and an angle a in the xz-plane for a
torque ty) with the following relationships:

tanb¼ tx=fO2
ðC�BÞg; tana¼�tyfO2

ðC�AÞg ð37a;bÞ

The larger the nominal spin O is, the smaller the
deviation angles a and b. When there is a single cross-
inertia iyz or ixz in the reference system, a uniform spin is

possible about the new principal axis direction

½sina,0,cosa�T with tana¼ ixz=ðC�AÞ ð38aÞ

½0,sinb,cosb�T with tanb¼ iyz=ðC�BÞ ð38bÞ

In the small-angle approximation, the angles a and b
play the same role in different planes. Therefore, if only
one transverse torque component is applied, its effect is
the same as that of a cross-inertia iyz or ixz

When both transverse torque components are present
and tz=0, a constant bounded spin rate is no longer an
exact solution of Eqs. (36) for an asymmetric body.
Therefore, we can only do a linearization about the initial
state vector (0, 0, O)T with O=O3(0)

A _o1þðC�BÞOo2 ¼ tx

B _o2�ðC�AÞOo1 ¼ ty

C _o3 ¼ 0 ð39a2cÞ

We find in first-order approximation that O3(t)EO is
constant.

When introducing the Tait–Bryan angles via the matrix
in Eq. (1), we obtain an MGKN system with a constant
right-hand side t=(tx, ty, 0)T

M €qþG _qþðKþNÞq¼ t ð40aÞ

with the anti-symmetric matrix N defined by

N¼

0 0 ty

0 0 �tx

�ty tx 0

2
64

3
75 ð40bÞ

We discuss first the system in Eqs. (39). The solution of
this non-homogeneous system is easily found as

o1 ¼ tx sinðvOtÞ=ðvAOÞ�tyf1�cosðvAOÞg=½ðC�AÞO� ð41aÞ

o2 ¼ txf1�cosðvOtÞg=½ðC�BÞO�þtysinðvOtÞ=ðvBOÞ ð41bÞ

with

v2 ¼ ðC�BÞðC�AÞ=AB40 when C4fA,Bg or CofA,Bg

ð41cÞ

The transverse angular velocity describes an ellipse with
center at {aO, bO}, i.e., the constant terms of Eqs. (41a,b),
which are the same as in Eq. (37) for small a and b. The
average values of the rates o1 and o2 over a nutation
period also give precisely the same results.

However, when inserting these averaged values into
the third complete Euler equation we obtain a ‘secular’
change in the spin rate

C _O3 �
txty

O
ðB�AÞ

ðC�AÞðC�BÞ
ð42Þ

The corresponding mean rate of change of energy is
given by

_E �
txty

O
ðB�AÞ

ðC�AÞðC�BÞ
ð43Þ

and is different from zero when the body is not symmetric
and both transverse torque components are present.
When both torque components have the same sign, the
satellite spins up. When they have opposite signs, the
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satellite will be despun completely after a time (see [15])

t� CO2
0=ð3

_EÞ ð44Þ

This instability result is independent of the magnitude
of tx and ty and therefore contradicts the application of the
ERB method to the case of a misaligned apogee motor.
The GEOS-I satellite narrowly escaped this fate.

More specific details and numerical parameters on the
GEOS-1 despin instability can be found in Table 3 on p. 274 of
Ref. [15]. The fact that GEOS-I had two long cables appended
was not relevant for this type of instability. The analysis can
easily be adapted to include the cables. The paper by van der
Ha [16] presents a second-order perturbation expansion
solution of Eqs. (39), which confirmed this instability. This is
a perfect example to illustrate that a bounded solution based
on a linearization about an initial state does not guarantee
the stability of the full non-linear system.

Because the right-hand side of (40a) is constant, we
can introduce a potential UT=y1tx+y2ty so that the
equations can be derived from a Lagrangian or Hamilto-
nian formalism. However, the conserved quantity is no
longer a quadratic form as the new term is linear. Hence,
the usual stability theorems, which are all based on
quadratic Lyapunov functions, are not applicable.

6. Conclusions

The use of stability theories has always been an
important issue in the design and operations of satellites.
The most widely used tool was to study the roots of a
linearized set of dynamic equations that did not include
damping. These equations may result from a linearization
about a reference motion or from an initial state. Even
in the first case, we cannot conclude about the stability
of the non-linear system but damping will be beneficial.
In the second case the first-order results may be invalid as
illustrated by GEOS-I in-orbit behavior.

For spinning satellites, the notion of directional stabi-
lity, with respect to the two attitude variables only,
emerges as the relevant model for practical applications.
This kind of stability can now be investigated directly by
means of an appropriate inertia tensor (in the force-free
case). When the linearized equations of motion are
available, the stability matrix can immediately be obtained
from the Frobenius–Schur formula for the reduction of
partitioned matrices. Under axial thrusting, the reference
uniform spin motion may or may not exist. In the first case,
Lypunov’s indirect method is applicable. In the second case,
the directional stability cannot be concluded from the
linearized equations about an initial state. We have
presented a few examples of practical relevance that
demonstrate the application of the various methods.

Appendix A. Introduction to MGK system

We consider a Lagrangian system with multi-dimen-
sional generalized coordinates q and linear velocity terms

L¼
1

2
_qTM _qþ

1

2
_qTGq�

1

2
qTKq ðA1Þ

The resulting equations of motion follow from the
Lagrangian in Eq. (A1) after calculating the momenta p

p¼
@L

@ _q
¼M _qþ

1

2
Gq

@L

@q
¼�

1

2
G _q�Kq

9=
;) M €qþG _qþKq¼ 0 ðA2a2cÞ

The gyroscopic matrix G characterizes spinning sys-
tems. Because the system is homogeneous, it has the null
solution q=0. The stability of the null solution can be
investigated by using the characteristic equation of a
polynomial eigenvalue problem or by Lyapunov’s direct
method as for linear systems there is a systematic way of
constructing Lyapunov functions.

The energy of the system in terms of the coordinates
q and the velocities _q is given by

E¼
1

2
_qTM _qþ

1

2
qTKq ðA3Þ

The matrix G does not appear in the energy equation
because the gyroscopic force G _q is perpendicular to the
velocity _q and does not perform any work on the system.
A direct substitution of the momenta p from Eq. (A2a) into
the energy Eq. (A3) yields the Hamiltonian H

E¼H¼
1

2
pTM�1p�

1

2
pTM�1Gqþ

1

2
gT K�

1

4
GM�1G

� �
q

ðA4Þ

The energy in Eq. (A3) is undoubtedly a Lyapunov
function when K40 so that the system is Lyapunov stable
in this case. When Ko0, the quadratic form in the second
term of Eq. (A3) will be negative and the energy may or may
not be a positive definite function. Therefore, the possibility
exists that the system is Lyapunov stable for Ko0.

A straightforward instability criterion due to Hagedorn
[13], is available

K�
1

4
GM�1G

� �
o0 ðA5Þ

The calculation of _E (using _qTGq¼ 0) along a trajectory
gives, as expected, _E ¼ 0 and not _Eo0, so that the system
is not asymptotically stable.
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