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NUMERICAL ANALYSIS OF THERMAL RADIATION

PERTURBATIONS FOR A MERCURY ORBITER

Benny Rievers,* Takahiro Kato,†

Jozef van der Ha‡ and Claus Lämmerzahl§

The perturbations induced by solar and thermal radiation are among the major
design drivers for the mission design and operation of near-solar space mis-
sions. While the magnitude of these perturbations is proportional to the inverse
square of the distance to the sun, their effects may vary drastically depending
on the orbit and eclipse conditions. Furthermore, the spacecraft configuration,
the optical properties as well as the attitude significantly affect the resulting
magnitude and direction of the perturbations. Therefore, all of these effects
need to be included in a high-fidelity analysis. While analytical methods offer
a useful quick first-order assessment of the characteristics of the thermal ef-
fects, high-precision predictions can only be achieved by using numerical
methods. They are able to incorporate any complicated spacecraft configuration
as well as sophisticated environmental properties like, for instance, the
thermo-optical properties of a planetary surface. Motivated by this, a numerical
approach for the precise modelling of the solar and thermal effects acting on a
Mercury Orbiter is presented. The expected disturbances resulting from thermal
and solar perturbations are calculated for a Messenger-like mission. Due to the
close distance to the sun and the high temperature gradients on the surface of
Mercury, the evolving disturbances significantly affect the trajectory of the
spacecraft.

The perturbations induced by solar and thermal radiation are among the major
design drivers for the mission design and operation of near-solar space missions.
While the magnitude of these perturbations is proportional to the inverse square
of the distance to the sun, their effects may vary drastically depending on the
orbit and eclipse conditions. Furthermore, the spacecraft configuration, the opti-
cal properties as well as the attitude significantly affect the resulting magnitude
and direction of the perturbations. Therefore, all of these effects need to be in-
cluded in a high-fidelity analysis. While analytical methods offer a useful quick
first-order assessment of the characteristics of the thermal effects, high-precision
predictions can only be achieved by using numerical methods. They are able to
incorporate any complicated spacecraft configuration as well as sophisticated envi-
ronmental properties like, for instance, the thermo-optical properties of a planetary
surface. Motivated by this, a numerical approach for the precise modelling of the
solar and thermal effects acting on a Mercury Orbiter is presented. The expected
disturbances resulting from thermal and solar perturbations are calculated for a
Messenger-like mission. Due to the close distance to the sun and the high temper-
ature gradients on the surface of Mercury, the evolving disturbances significantly
affect the trajectory of the spacecraft.

INTRODUCTION

Spacecraft orbiting the inner planets of the solar system, in particular Mercury, are subject to con-
siderable perturbations resulting from interactions with the harsh space environment in the vicinity
of the sun. The major influence on the trajectory of the spacecraft results from momentum exchange
between photons and the spacecraft surfaces. Besides the solar radiation pressure (SRP) acting on
the spacecraft surface, the sunlight reflected from the planet surface as well as the emitted planetary
infrared radiation result in Albedo pressure (ALB) and Infrared pressure (INF) contributions to the
resulting perturbations. Furthermore the thermal radiation emitted by the satellite itself leads to a
thermal radiation pressure (TRP), adding up to the total effect.

The importance of an accurate modeling has already been demonstrated by a number of recent
publications. With a high precision thermal analysis of the Pioneer 10 spacecraft1 we have shown,
that the so called Pioneer anomaly, a nearly constant deceleration of the probe on its way out of the
solar system, is in fact caused by TRP. In that case, the anisotropic dissipation of the radio-isotopic
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thermal generator waste heat as well as the spacecraft compartment heat are causing the distur-
bance.1 As another example, an analysis of thermal disturbances acting on ESAs Rosetta spacecraft
during its heliocentric cruise phases has uncovered a non-modeled thermal drag correlated with the
solar radiation pressure which led to roughly 10 % deviation of measured and modeled SRP.2–5 By
using analytical methods we could also show that the treatment of thermal effects is particularly
important for missions such as Messenger which operate close to the sun.6

The significance of accurate SRP, ALB and INF modelling has also been demonstrated for the
case of Messenger by Scott et al.,7 who used analytical disturbance force models as inputs in numer-
ical orbit propagators and estimated the influence on the orbital elements. Motivated by these results
and our own experiences, the scope of this paper is the introduction of a complete generic numerical
approach for the calculation of solar and thermal disturbances. This new method yields an improved
modeling precision compared to the analytical methods introduced in Kato et al.6 Furthermore we
add a high precision TRPmodel, which includes thermal interactions between spacecraft and planet,
to the set of available numerical disturbance analysis methods.

A high precision numerical approach demands the inclusion of detailed spacecraft geometry, op-
tical properties of the spacecraft surfaces as well as a detailed geometric model of the planet surface.
In our approach, the spacecraft as well as the planet are therefore represented by a set of surface
cells allowing for the inclusion of geometrical details. The method is implemented by means of a
generic MATLAB/SIMULINK-based software tool with a modular structure. This GENERIC tool
includes individual models for the solar radiation pressure, the re-emitted thermal radiation pres-
sure and, in addition, for the planetary albedo and infrared radiation pressure effects. Furthermore
the orbits of planet and spacecraft are integrated numerically and transformations between different
coordinate systems, the calculation of solar eclipse conditions as well as field-of-view computations
are included. Starting conditions can either be specified as Keplerian elements or as satellite/planet
state vectors thus enabling a broad range of possible input parameter variations. The individual dis-
turbance models as well as the general numerical approach are explained in the following sections.

GENERIC OVERVIEW

The general structure of the GENERIC tool is displayed in figure 1. Three main blocks can be
identified. The input section controls the interface to external data such as the planet model, the
spacecraft model as well as the user-defined simulation starting options. Here the different models
as well as the initial state vectors/ephemeris of planet and spacecraft are specified by the user by
means of external text files. The orbit section controls the numerical integration of the planet and
spacecraft orbit as well as the transformations between spacecraft, planet and inertial coordinate
frames.

The non-gravitational forces section includes the individual SIMULINK disturbance models for
SRP, TRP, ALB and INF. The methods described in this paper are implemented by MATLAB s-
functions with input/output ports. Here the disturbance models use the info specified in the input
section, such as the satellite geometry, satellite optical surface parameters, planet optical surface
parameters as well as the state vectors of planet and satellite as basis for the calculation of the
resulting orbit perturbations. The different methods used within the individual blocks as well as the
basic theory for the calculation of the disturbances are described in the following section.
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Figure 1. Structure of the GENERIC simulation tool

BASIC EQUATIONS ANDMODELS

Coordinate systems

The spacecraft trajectory is mainly determined by the gravitational interaction with Mercury.
However, for long-term simulations, the position of the gravitating body also changes with respect
to the sun. Since the direction of the sun with respect to spacecraft and planet, as well as the position
of the spacecraft relative to the planet dominate the resulting thermal forces, different coordinate
systems have to be implemented to describe all relevant effects properly. The GENERIC simulator
includes four main coordinate frames:

1. The J2000 Heliocentric inertial frame (subscript HCI),
2. The J2000 Mercurycentric inertial frame (subscript MCI),
3. The planet frame (subscript PL),
4. The spacecraft frame (subscript SC).

As can be seen in figure 2 the HCI is centered within the sun with xHCI -axis pointing to the vernal
equinox, zHCI -axis is normal to the ecliptic plane and yHCI -axis is perpendicular to xHCI and
zHCI . This inertial frame is used for the numerical integration of the planet trajectory as well as
for the determination of the eclipse conditions. This implies that the starting orbital elements of the
planet are given within the HCI-frame. The MCI is centered within Mercury, where the xMCI-axis
points towards the ascending node of Mercury’s orbital plane, the zMCI -axis is normal to Mercury’s
rotation axis (which is effectively normal to the Mercury orbital plane, due to the negligible axis
tilt) and the yMCI-axis is perpendicular to xMCI and zMCI . This inertial frame is used to compute
the trajectory of the spacecraft in the planet’s inertial coordinates. Consequently the starting orbital
elements of the spacecraft are defined within the MCI. The PL system is used for a convenient
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Figure 2. Coordinate frames implemented in GENERIC

formulation of the planet lighting conditions as well as the description of the thermal interactions
between planet and spacecraft surfaces. Therefore, the xPL-axis is aligned with the sun direction,
zPL is normal to Mercury’s orbital plane and yPL is perpendicular to xPL and zPL. The SC frame
is implemented to express all computed forces acting on the spacecraft according to the current
orientation of the spacecraft itself. It is assumed that within the scope of the studied orbit periods
sun-pointing is kept at all times. Consequently ySC is aligned with xPL, while zSC and xSC are
kept at the initial orientation of the body height and length axes, respectively, which are assumed
to be aligned with −zPL and −yPL, respectively. For the assessment of the different effects which
depend on the relative position and orientations of the frames, coordinate transformations between
all defined frames are needed. The main transformations are described in the following.

The transformation between MCI and HCI, which is needed for an accurate description of the
spacecraft position in HCI frame, can be realized by rotating with planet inclination ipl around
xMCI and planet right ascension Ωpl around zHCI as well as offsetting with the planet position
�rpl,HCI . Here A denotes a transformation matrix. Consequently the transformation of a vector
�rsc,HCI in MCI frame to HCI frame can be expressed as:

�rsc,HCI = A
MCI−>HCI

· �rsc,MCI (1)

=

⎡
⎣cos Ωpl − sinΩpl cos ipl sinΩpl sin ipl
sinΩpl cos Ωpl cos ipl − cos Ωpl sin ipl

0 sin ipl cos ipl

⎤
⎦ · �rsc,MCI + �rpl,HCI .

The transformation between HCI and MCI is described by the inverse of A
MCI−>HCI

. The trans-
formation between MCI and planet frame is governed by the planet argument of periapsis ωpl and
the planet true anomaly νpl as well as the sun-alignment requirement. Consequently the transfor-
mation can be expressed by a single rotation around zMCI with:

�rsc,PL = A
MCI−>PL

· �rsc,MCI (2)

=

⎡
⎣ cosφpl sinφpl 0
− sinφpl cosφpl 0

0 0 1

⎤
⎦ · �rsc,MCI ,
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where the position angle φpl is given by

φpl = νpl + ωpl + π . (3)

The reverse transformation A
PL−>MCI

is again given by the inverse A
MCI−>PL

. Finally the
transformation between planet frame and body frame is given by the alignment criteria as specified
above. Thus the transformation can be expressed as:

�rsc,SC = A
PL−>SC

· �rsc,PL (4)

=

⎡
⎣ 0 −1 0
−1 0 0
0 0 −1

⎤
⎦ · �rsc,PL ,

which is identical to A
SC−>PL

. All other transformations such as A
HCI−>SC

can be calculated
from combinations of the transformations specified above.

Spacecraft model

In order to implement a realistic model of the spacecraft, we apply a set of surface cells to as-
semble the complete spacecraft. As listed in table 1, the optical surface parameters as well as the
position and the orientation of the respective spacecraft cells need to be specified in the spacecraft
frame. The transformation into planet and inertial frame, which is performed within the input block
then gives the needed inputs for the calculation of the various perturbations. The total number of
surface cells is not limited in this approach and can be chosen freely, corresponding to the required
level of detail. With this, the numerical model employs a greatly improved geometric modelling
capability compared to analytical models. Note that this approach only allows for external surfaces,
since merely the orientation angle of a surface to the source of a perturbation (sun, planet) deter-
mines whether the surface is subjected to it. Consequently, a body with a front and a rear side (such
as a solar panel) has to be modeled by at least two individual surface cells.

Table 1. Spacecraft model interface

Cell area [m2] Right ascension [rad] Declination [rad] Cell center [m] αsc γS,sc γD,sc

Here αsc is the optical coefficient of absorption of the spacecraft surface, γS,sc and γD,sc are the
coefficient of specular and diffuse reflection, respectively. A visualization of the spacecraft model
interface (Messenger case) is shown in figure 3 left. Note that the right ascension, the declination
and the surface center vector have to be specified within the SC-frame.

Planet model

For the calculation of ALB, INF and TRP the radiation exchange between planet and satellite
surfaces determines the magnitude of the resulting perturbations. The exchanged radiation fluxes
depend on the radiation view factors, which are given by the relative orientation between satellite
and planet surfaces and denote the fraction of radiation exchanged between a radiation source and an
absorber. Consequently, the accuracy of the calculation of the effects resulting from an interaction
with the orbited planet can be increased by also modeling the planet surface as a set of surface cells,
since the orientation of the normal direction on the planet surface to the spacecraft cells changes
with the position of the spacecraft on its orbit. The planet model is shown in figure 3 right for an
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Figure 3. Visualization of spacecraft model interface (left) and planet model interface (right)

exemplary case. As can be seen, the planet is assumed to be an ideal sphere, where the individual
surfaces are specified by the angles Φ and Θ, which describe the position of the respective surface
elements corner node positions in spherical coordinates and consequently the size of the cell surface.
Each surface cell obtains a center node which specifies the considered normal direction (normalized
vector between planet center and surface element center). Note that the resolution of the planetary
grid can be specified freely, at the cost of computational time for a high number of surface elements.
As necessary inputs for the calculation the optical parameters of the planet surface as well as the
mean cell temperatures have to be specified as shown in table 2. Note that different values of optical
parameters and temperature may be assigned to each cell which, for instance, is used to assign
different temperatures on the planets day and night side.

Table 2. Planet model interface

Surface area [m2] Right ascension [rad] Declination [rad] αpl γD,pl εpl

Here αpl is the optical coefficient of absorption of the planet surface cells, γD,pl is the coefficient
of diffuse reflection and εpl is the coefficient of emission. The total number of cells is given by the
planet resolution nres, which determines the number of elements nΦ and nΘ in Φ and Θ direction
by ncells = 2 · n2

res = nΘ · nΦ = 2n2
Θ
. The planet cell center coordinates (in planet frame) are

determined by

�rC,PL(i, j) =

⎡
⎣Rpl cos Φ(i) cos Θ(j)
Rpl sinΦ(i) cos Θ(j)

Rpl sinΘ(j)

⎤
⎦ , (5)

with planet radius Rpl. Here the borders of a specific planet surface cell i, j are given by

Φ(i) = −π + 2π · (i− 1)/nΦ and Θ(j) = −π/2 + π · (j − 1/2)/nΘ . (6)

The normal direction of each planet cell is characterized by the vector norm of �rC,PL(i, j). The
cell surface area is calculated in a twofold approach. First, the surface of a spherical section AM (j)
bordered by the elevation angles Θ(j) and Θ(j + 1) is calculated:

AM (j) = 2πR2

pl(sin(Θ(j + 1)− sin(Θ(j)) . (7)

Next, this area is distributed evenly among all planet cells within Θ(j) and Θ(j + 1) by

AC,pl(i, j) = AM (j)/nPhi . (8)
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Starting conditions and numerical integration

The satellite and planet starting conditions can either be specified as a state vector (position and
velocity in Cartesian space) or by means of Keplerian elements. If Keplerian elements are specified,
the starting state vectors of planet and spacecraft �P (position) and �V (velocity) are given by the
transformations

�P = r

⎡
⎣cos(ω + ν) cos Ω− sin(ω + ν) sinΩ cos i
cos(ω + ν) sinΩ + sin(ω + ν) cos Ω cos i

sin(ω + ν) sin i ,

⎤
⎦ (9)

�V =

√
μ

p
e sin ν �P +

√
μ p

r
·
⎡
⎣− sin(ω + ν) cos Ω− cos(ω + ν) sinΩ cos i
− sin(ω + ν) sinΩ + cos(ω + ν) cos Ω cos i

cos(ω + ν) sin i ,

⎤
⎦ (10)

where μ = GMB with the gravitational constant G and the mass of the orbited central body MB

and
r =

p

1 + e cos ν
, (11)

where p = a(1 − e2). Note that state vector information is always given within the inertial frame,
in which the Keplerian elements are defined. Consequently, �P and �V are given in MCI-coordinates
for the spacecraft and in HCI coordinates for the planet. Starting from these state vectors, the orbits
of planet and spacecraft are integrated numerically by the two-body equation

�P (t) = �P (t0) + μ

∫ ∫
− 1

r3
· �r dtdt , (12)

where t0 is the starting time, μ is the specific gravitational constant of the orbited body and r is
the position vector of the orbiting body. Within GENERIC this computation is realized by means
of SIMULINK integration blocks with starting conditions �P (t0) and �V (t0). Since the disturbance
analysis demands transformations between the different coordinate systems, which are defined by
means of Keplerian elements, the calculated state vectors have to be re-transformed into Keplerian
elements for each time step. By this approach, the spacecraft position in the planet frame can
be updated corresponding to the current position of the planet. The calculation of the Keplerian
elements uses the known planet position �rpl,HCI and the planet velocity vector �vpl,HCI in inertial
space. The specific angular momentum can be obtained from

�hpl,HCI = �rpl,HCI × �vpl,HCI . (13)

The eccentricity vector, which results from the integration of the specific angular momentum vector,
is defined as

�epl =
1

μ
· �vpl,HCI × �hpl,HCI −

�rpl,HCI

|�rpl,HCI | . (14)

The eccentricity can then be calculated by epl = |�epl|. The right ascension Ωpl is known from the
angular momentum vector �hpl,HCI by

Ωpl = arctan

(
h1
−h2

)
, (15)

where h1 and h2 are the xHCI and yHCI components of �hpl,HCI , respectively. The inclination ipl
is given by

iPL = arccos

(
h3

|�hpl,HCI |

)
, (16)



2646

where h3 is the zHCI component of �hpl,HCI . With the orbit parameter

p =
|�hpl,HCI |2

μ
, (17)

the semi major axis a can be determined to

a =
p

(1− e2pl)
. (18)

The true anomaly can be computed from

νpl = arccos

(
�epl · �rpl
|�epl · �rpl|

)
. (19)

Finally the argument of periapsis follows from

ω = arccos

(
�epl · �npl

|�epl · �npl|
)

, (20)

where �npl is the periapsis vector

�npl =

⎛
⎝0
0
1

⎞
⎠× �hpl,HCI . (21)

By deriving the Keplerian elements of the planet for each time step and using the transformations
defined in the frame definition section, the simulation includes the change of planet position while
the spacecraft orbits the planet. The resulting effect can be seen from the evolution of the spacecraft
position for one orbit rotation, expressed in planet frame. As shown in figure 4, the spacecraft orbit
slowly rotates in the planet frame, summing up to one full rotation for a whole planet year. Note that
the same calculation can be performed to obtain the updated Keplerian elements of the spacecraft. In
this case, Mercury has to be regarded as the central body, implying the use of the Mercury-specific
gravitational constant instead of the solar gravitational constant.

Figure 4. Rotation of orbital plane in PL frame during the course of two orbits
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SRP Model

The SRP acting on the different spacecraft surfaces is determined by the direction to the sun,
the solar distance as well as the position of the planet and the optical properties of the spacecraft
surfaces. The solar flux at the spacecrafts distance from the sun rsc,HCI can be determined with

P (rsc) =
P1AU

|�rsc,HCI |2 . (22)

The total acceleration acting on each individual spacecraft cell k can then be computed with

�aSRP,SC(k) =
P (rsc,HCI)

c ·msc

Asc(k) cos φinc

[
(αsc(k) + γD,sc(k)) · �rsun,SC (23)

+ 2

(
γD,sc(k)

3
+ γS,sc(k) cos φinc

)]
�nsc,SC(k) ,

where msc is the spacecrafts mass, �rsun,SC is the sun direction in SC frame, φ is the angle of
incidence of the incoming sunlight and �nsc,SC(k) is the surface normal on each spacecraft cell,
expressed in SC frame. Only cells, where φinc = arccos (�nsc,SC(k) · �rsun,SC) ≤ π/2 and which
are not in eclipse, are subjected to SRP. The total SRP can then be determined by summing all
individual SRP results. The GENERIC eclipse model is displayed in figure 5.8

Figure 5. Different types of eclipses

The length of the shadow C can be determined by

C =
RplS

Rsun −Rpl

, (24)

where S is the distance of the planet to the sun with S = |�rpl,HCI | and Rpl and Rsun are the radii
of the planet and sun, respectively. The angle Θ between the vector from the spacecraft to the sun
�DS = −rsc,HCI and the vector from the spacecraft to the planet �DP = −rsc,PL is

Θ = arccos( �DS · �DP ) . (25)

The apparent angular radii of sun and planet, as viewed from the spacecraft can be expressed as

ρS = arcsin(
RS

DS
) and ρP = arcsin(

RP

DP
) , (26)

where DS = |�rsc,HCI | and DP = |�rsc,PL| are the distances of the spacecraft to the sun and to
the planet center, respectively. The different types of possible eclipses can then be formulated as

1: Total eclipse: S < DS < S + C and ρP − ρS > Θ
2: Partial eclipse: DS > S and ρP + ρS > Θ > |ρP − ρS |
3: Annular eclipse: S + C < DS and ρP − ρS > Θ

If either of the eclipses is detected, the received solar flux for all spacecraft cells is set to zero,
effectively leading to no SRP acting on the spacecraft during eclipse.
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INF Model

For the calculation of the influence of infrared radiation (as well as for ALB and TRP) the in-
teraction between planet surface and spacecraft surfaces determines the magnitude of the resulting
perturbations. Consequently, an illumination model, which determines which planet cells are il-
luminated by the sun and thus specifies the cell surface temperature is necessary. Furthermore, a
visibility model, which determines the fraction of the planet surface that exchanges radiation with
each of the spacecraft surfaces, is needed. The illumination model is illustrated in figure 6.

Figure 6. Illumination model

The criterion for an illuminated planet cell can be formulated by means of the illumination angle
φILLU (i, j) with

φILLU (i, j) = arccos(�rsun,PL · �npl,PL(i, j)) ≤ π

2
, (27)

where �npl,PL(i, j) is the respective normal vector on the planet cell surface and �rsun,PL is the
sun vector in planet frame. As can be seen in figure 7 for an exemplary spacecraft and planet
constellation, the visibility of any planet cell to a spacecraft cell depends on the orientation of the
different spacecraft cells as well as on the position of the spacecraft with respect to the planet cells
as shown in figure 7.

Figure 7. Visibility model
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The line of sight vector from a planet cell to a spacecraft cell �rpl−sc,PL(i, j, k) is defined as

�rpl−sc,PL(i, j, k) = �rC,sc,PL(k) − �rC,pl,PL(i, j) , (28)

where �rC,sc,PL(k) is the position of the spacecraft surface centers expressed in the planet frame.
Two visibility angles can be defined:

φV IS,1(i, j, k) = arccos(�rpl−sc,PL(i, j, k) · �nC,pl,PL(i, j)) , (29)

φV IS,2(i, j, k) = arccos(−�rpl−sc,PL(i, j, k) · �nsc,PL(k)) , (30)
where �nSC(k) is the normal vector of spacecraft surface k. A planet cell (i, j) is visible to a
spacecraft cell k if

φV IS,1(i, j, k) ≤ π

2
and φV IS,2(i, j, k) ≤ π

2
. (31)

Since the magnitude of infrared radiation depends on the planet surface temperature, the mean
temperatures of the planet surface cells visible to the spacecraft cells have to be determined. This
is realized by a twofold approach. For the “night” side of the planet a fixed “night” temperature is
applied to all planet cells which are not illuminated by the sun. On the “day” side the temperature is
then calculated by means of the thermal equilibrium between incoming solar radiation and outgoing
radiation emitted by the planet surface. Here the total receiving projected area Arec,pl = π(Rpl)

2 is
only half of the emitting surface area Aday,pl = 2π(Rpl)

2, leading to

Tday,pl =

(
P1AU

r2pl,HCI

αpl(i, j)
1

2σεpl(i, j)

) 1

4

. (32)

Note that this approach does not include thermal gradients and assumes constant temperatures on
either of the planet sides.

The magnitude of the radiation flux from any visible planet cell (i, j) to a spacecraft cell k is
characterized by the radiation view factor F (i, j, k)

F (i, j, k) =
cosφV IS,1 cosφV IS,2

π|�rpl−sc,PL(i, j, k)|2 Asc(k) , (33)

which is a simplification of the exact radiation view factor integral as it is valid only for large
distances (compared to the surface dimensions) between spacecraft and planet surface cells. The
total emitted planet cell energy Epl can be calculated with

Epl(i, j) = σεpl(i, j)Apl(i, j)Tpl(i, j)
4 . (34)

The radiation flux received by a spacecraft cell k is then characterized by

EINF (i, j, k) = Epl(i, j) · F (i, j, k) . (35)

Now the INF acceleration resulting from emission of planet cell i, j into spacecraft cell k can be
computed by

�aINF,SC(i, j, k) =
EINF (i, j, k))

c ·msc

[
(αsc(k) + γD,sc(k)) · (−�rsc,pl,SC(k)) (36)

+ 2

(
γD,sc(k)

3
+ γS,sc(k) cos φV IS,2(i, j, k)

)]
�nsc,SC(k) .

The total INF acting on the spacecraft is then calculated by summing all individual �aINF,SC(i, j, k)
over all planet and all spacecraft cells.
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ALB Model

The calculation of the ALB acting on the spacecraft is realized in a twofold approach. First
the solar flux received by the individual planet cells is calculated. Based on the planet cell optical
properties the reflected fluxes and the fluxes received by the spacecraft cells are then obtained. The
second step closely resembles the calculation of the INF. The received solar flux Prec,pl(i, j) is
determined by the orientation of each planet cell i, j to the sun with

Prec,pl(i, j) =
P1AU

r2pl,HCI

cosφsun(i, j) , (37)

where the sun orientation angle φsun(i, j) of each cell is characterized by

φsun(i, j) = arccos(�npl(i, j) · �rsun) . (38)

Note that only the illuminated cells (see INF model description) are considered in this approach.
The total energy reflected by the planet cell can then be computed by

Erefl,pl(i, j) = γD,pl(i, j)Prec,pl(i, j)Apl(i, j) . (39)

Assuming a perfect diffuse reflection of the incoming solar radiation, the energy received by a
spacecraft cell k can be determined by means of view factors F (i, j, k), as described in the INF
model section

EALB(i, j, k) = F (i, j, k)Erefl,pl(i, j) . (40)

Corresponding to the INF visibility model , spacecraft surfaces only receive Albedo from those
planet cells which are visible to the spacecraft. In conclusion, the ALB acceleration acting on
spacecraft surface k caused by solar radiation reflected by a visible and illuminated planet surface
i, j is

�aALB,SC(i, j, k) =
EALB(i, j, k))

c ·msc

[
(αsc(k) + γD,sc(k)) · (−�rpl−sc,SC(k)) (41)

+ 2

(
γD,sc(k)

3
+ γS,sc(k) cos φV IS,2(i, j, k)

)]
�nsc,SC(k) .

The sum over all planet and spacecraft cells then delivers the total spacecraft ALB acceleration.

TRP Model

The TRP model is the most complex perturbation model within the GENERIC tool, since the
TRP magnitude depends on SRP, INF and ALB information. Consider a spacecraft in the vicinity
of a planet as depicted in figure 8.

Assuming thermal equilibrium, the resulting spacecraft surface temperatures depend on the mag-
nitude of the incoming albedo, solar and infrared radiation fluxes. In addition an internal heat gener-
ation as well as heat transfer through the spacecraft interior volumes and into the space environment
(by means of heat radiation) has to be considered. The general heat balance can be formulated as

Qout = QGen +Qrec,SUN +Qrec,INF +Qrec,ALB , (42)

where Qout is the heat flux emitted by the spacecraft surface, QGen is internal heat production and
Qrec,SUN , Qrec,INF and Qrec,ALB are the received solar, infrared and albedo heat fluxes, respec-
tively. For missions close to the sun, the internally generated energy is negligible compared to the
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Figure 8. Heat balance for spacecraft system

incoming energy fluxes. Furthermore heat conduction into other parts of the spacecraft doesn’t
need to be treated in case of good insulation, as is usually the case for bus and heat shield surfaces.
Consequently the heat balance simplifies and the equilibrium temperature of spacecraft surface k
becomes

Te(k) =

(
Qrec,SUN(k) +Qrec,INF (k) +Qrec,ALB(k)

σεsc(k)A(k)

) 1

4

, (43)

where σ is Stefan-Boltzmann’s constant, εsc(k) is the spacecraft surface emissivity with εsc(k) =
αsc(k) and the outgoing heat flux can be described by Stefan Boltzmann’s law Qout = σεscAT

4
e .

For thin structures such as solar panels, where the through-thickness heat conduction may signifi-
cantly affect the resulting equilibrium temperatures, a different approach has to be taken. Consider-
ing a standard solar panel geometry (honeycomb core with face sheets) as shown in cross-section in
figure 9, two energy balances (one for the front and one for the rear) may be formulated.

Figure 9. Incoming and outgoing heat fluxes for a standard solar panel

Qin,1 −QR −QC −Qout,1 = 0 , (44)
Qin,2 +QR +QC −Qout,2 = 0 ,

where Qin,1 and Qin,2 are the external heat fluxes received by the front and rear of the solar panel,
Qout,1 andQout,2 are the re-emitted heat fluxes. The heat transport through the array is governed by
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two different effects. A considerable amount of heat QR is transported through the honeycomb core
by heat radiation, resulting from the fact that the individual honeycomb cells only possess a small
cross-sectional area for heat conduction. HeatQC is also conducted directly through the honeycomb
material. The ratioQC/QR is determined by the geometric and optical properties of the honeycomb
core. The model presented here has been established by a study of the Rosetta spacecraft.9

The mean thermal conductivity qSP can be calculated by

qSP =
kSP
dSP

rHCrC , (45)

where kSP is the thermal conductivity of the solar panel core material, dSP is the thickness of the
solar panel, rHC is the ratio of honeycomb cell cross-sectional area to the panel area and rC the
solar cell packing factor. The heat transported by heat conduction is

QC = qSPΔT = qSP (T1 − T2) , (46)

where T1 and T2 are the front and rear temperatures, respectively. The radiative heat transport can
be expressed as

QR = εintσ
1− rHC

2− εint
(T 4

1 − T 4
2 ) . (47)

In order to compute the equilibrium temperatures, equation 44 has to be solved iteratively. To
accomplish this, starting values T 1 and T 2 are computed by

T 1 =

(
Qin,1

σAε1

)
and T 2 =

(
Qin,2

σAε2

)
. (48)

The solution of the equation system

Qin,1 − εintσ
1− rHC

2− εint
(T 4

1 − T 4
2 )− qSPΔT = qSP (T1 − T2)− σε1A1T

4
1 = 0 , (49)

Qin,2 + εintσ
1− rHC

2− εint
(T 4

1 − T 4
2 ) + qSPΔT = qSP (T1 − T2)− σε2A2T

4
2 = 0 ,

with starting values T 1 and T 2 delivers the equilibrium temperatures. Note that for higher precision,
the optical properties of the interior and exterior surfaces of the panel may also be modeled as a
function of the actual surface temperature.

By assigning the iterated temperatures to the respective spacecraft solar panel cells k, the space-
craft surface equilibrium temperature set Te(k) can now be computed and the TRP acceleration
acting on each spacecraft surface cell can be calculated with

�aTRP,SC(k) = − 2

3mscc
�nsc,SC(k)σεsc(k)Asc(k)Tsc(k)

4 , (50)

where the factor 2/3 results from Lambert’s cosine law and the hemispheric emission pattern. The
total TRP can be computed by the sum of all individual spacecraft surface cell TRP vectors.
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SPACECRAFT ANDMISSION SCENARIO

As an example test and evaluation case the Messenger mission has been chosen for a detailed
analysis of solar and thermal perturbations. The evaluation of these perturbations acting on the
Messenger spacecraft demands the simulation of the spacecraft trajectory for a whole Mercury
year as well as the detailed investigation of specific scenarios. The initial orbit is specified to
the measured initial Messenger MOI-values as given in Stanbridge et al.10 The resulting orbital
elements in inertial MCI frame are listed in table 3. The mean orbital elements of Mercury, which
are used in this study are specified in table 4.

Table 3. Messenger orbital elements in MCI coordinates

Semi-major axis [m] Eccentricity [-] Right Ascension [o] Inclination [o] Argument of Periapsis [o]

10175000 0.74 350.17 82.52 119.16

Table 4. Mercury MOI orbital elements in HCI coordinates

Semi-major axis [m] Eccentricity [-] Right Ascension [o] Inclination [o] Argument of Periapsis [o]

57910000000 0.2056 48.33 7.0 77.46

A parameter constellation constructed from the freely available information10 has been chosen as
test case for the analysis. These reference values are listed in table 5.

Table 5. Messenger model parameters

Cell area [m2] Right ascension [o] Declination [o] Cell center [m] αsc γS,sc γD,sc

2.122 -127.2 0.0 [-0.71 -1.2125 0.0] 0.64 0.14 0.22

1.264 -90.0 0.0 [0.0 -1.0 0.0] 0.63 0.14 0.23

2.121 -52.8 0.0 [0.71 -1.2125 0.0] 0.64 0.14 0.22

2.35 0.0 0.0 [0.71 0.0 0.0] 0.7 0.05 0.25

2.35 180.0 0.0 [-0.71 0.0 0.0] 0.7 0.05 0.25

1.803 0.0 90.0 [0.0 0.0 0.635] 0.7 0.05 0.25

1.803 0.0 -90.0 [0.0 0.0 -0.635] 0.7 0.05 0.25

4.612 90.0 0.0 [0.0 0.925 0.0] 0.7 0.05 0.25

2.724 -90.0 0.0 [1.943 0.0 0.0] 0.75 0.25 0.0

2.724 -90.0 0.0 [-1.943 0.0 0.0] 0.75 0.25 0.0

2.724 90. 0.0 [1.943 0.0 0.0] 0.7 0.05 0.25

2.724 90. 0.0 [-1.943 0.0 0.0] 0.7 0.05 0.25

The resulting Messenger spacecraft model is displayed in figure 10. The scope of the analysis
is i) the evaluation of the numerical method by means of the analytical method introduced in Ref.6
as well as ii) the analysis of the thermal perturbations acting on the Messenger spacecraft for a
complete Mercury year, including the different trajectories of both planet and spacecraft. Hence,
the following section compares results obtained with the analytical method to the numerical results
for defined test scenarios.
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Figure 10. Spacecraft model: Messenger example.

EVALUATIONWITH ANALYTICAL RESULTS

Test Case Parameters

The presented numerical model has been evaluated for the Messenger orbit by comparing with
the analytical model previously developed.6 There are relevant works already published on the orbit
determination and modeling of Messenger spacecraft.7, 10 However, these papers have no provision
for thermal re-radiation effects (i.e. TRP) which are expected to have considerable effects under
the severe flux from the Sun near Mercury. It is important to note that the present numerical and
analytical models have been developed independently including the temperature calculations and
thus, the proposed approach is appropriate for evaluation purposes.

We implement the parameters achieved by Messenger as our test cases for the practical illustra-
tion,11, 12 see Figure 11 and Table 6. Test cases are shown in Figure 11 with respective distance
of Mercury from Sun and orbit plane orientation of the orbiter at each position. These test cases
are representing unique geometries under the heliocentric progression of Mercury. In particular, the
orbit plane of the orbiter aligns close to the terminator (Dawn-Dusk orbit) in Case 1 and 3 and it
passes over the sub-solar point (Noon-Midnight orbit) in Case 2 and 4. At each test case condition,
we calculate non-gravitational perturbations over one revolution of the orbiter (i.e. 12 hours).

Table 6. Test case parameters of Mercury and Orbiter

Case No. νM [deg] ΩSC [deg]

1 10
3502 98

3 189

4 279
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Figure 11. Evaluation test cases

For these four cases shown in Figure 11, a few of the orbital elements of the orbiter are fixed, in
particular semi-major axis, eccentricity, argument of periapsis, and inclination. These parameters
are set to the MOI values achieved by Messenger,12 see Table 3. Table 4 contains the parameters of
Mercury. Note that all orbital elements of the orbiter in Table 3 are defined in the MCI frame.13

Analytical Model

The model evaluation has been performed by using the analytical model developed by the au-
thors.6 These prescribed cases have advantages because of their unique geometries, so that relative
positions can be obtained analytically by means of straightforward procedures.6

Perturbation equations are identical in the numerical and analytical model, however there are sev-
eral aspects which are not taken into account for the analytical model, e.g. the 7 [deg] inclination
of the Mercury orbit plane. Note that the solar flux is assumed to be uniformly parallel in the ana-
lytical model and thus, the eclipse by Mercury is calculated with a cylindrical model.6 In addition,
the Mercury surface cell area calculation method used in the numerical model is implemented into
the analytical model, see 8. It is important to note that the view factor calculation is still valid even
though we modified the area calculation method. In short, the major assumptions and conditions
applied in the analytical model are summarized as follows;

• Evolution and rotation of Mercury are neglected during one evolution of the orbiter (12 hrs),
• The orbiter follows the Keplarian motion around Mercury.

Comparison and Evaluation

Independent results obtained from the two models are evaluated in the prescribed test cases.
Tables 7 and 8 contain the magnitude of the SRP effect in each case and the percentages of each
perturbation with respect to SRP. We note that in the analytical model, Mercury’s orbital motion is
not taken into account and thus the magnitude of SRP is fixed except eclipses.

There are several differences to be found in the results shown in Tables 7 and 8. These discrep-
ancies are induced by the progression of the orbit plane of the orbiter. In the analytical model, the
orbit plane is fixed during the simulation, on the other hand in the numerical model, the orbit plane
is shifted about 2 [deg] in terms of right ascension after one orbit. This displacement induces the
difference in the peaks, however the average magnitudes of each perturbation stays below 5 percent.
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Table 7. Analytical Results of Acceleration in [%] of SRP Magnitude

ALB [% of SRP] INF [% of SRP] TRP [% of SRP]

Case SRP [10−7m/s2] max min max min max min

1 8.45 0.32 0.02 6.68 0.18 25.60 23.44

2 5.51 2.37 0.00 14.10 0.01 23.24 18.80

3 3.71 0.95 0.01 19.24 0.14 19.99 18.81

4 6.22 6.45 0.00 26.79 0.00 24.05 17.93

Table 8. Numerical Results of Acceleration in [%] of SRP magnitude

Case SRP [10−7m/s2] ALB [% of SRP] INF [% of SRP] TRP [% of SRP]

max min max min max min max min

1 8.45 8.42 0.20 0.00 3.66 0.17 23.78 23.31

2 5.51 (eclipse) 4.40 0.00 25.22 0.02 20.43 18.46

3 3.72 3.71 0.77 0.01 17.56 0.08 18.97 16.89

4 6.33 (eclipse) 6.11 0.00 25.70 0.00 21.33 17.74

Furthermore, the magnitudes of the accelerations of SRP, INF, ALB are at the approximate mag-
nitudes given in Ref.10 These results confirm that the models are practically appropriate and they
provide further insight in the characteristics of the thermal effects.

NUMERICAL RESULTS

The evolution of the magnitudes of SRP, INF, ALB, and TRP acting on a Messenger-like space-
craft has been analyzed by using the mission and spacecraft parameters listed in tables 4, 3 and 5.
The magnitude of the perturbations has been computed for the test cases defined in the previous
section. Results for the different perturbations are shown in figure 12.

As can be seen, all disturbance magnitudes are proportional to the inverse square of the distance
to the sun. The SRP is the dominant disturbance in all cases, followed by TRP, INF and ALB. The
thermal effects show peaks in the vicinity of the planet, which is understandable, since the view
factors to the planet surface scale with the inverse square of the distance of the spacecraft to the
planet. In total, the mean sum of all thermal effects stays in the range of 20-30 % of the SRP. Near
the planet surface peak values show higher percentages, as listed in table 8.

For a complete evaluation of the solar and thermal perturbations acting on Messenger a complete
Mercury year, implying 172 spacecraft orbits, has been processed. The computed evolution of the
maximum perturbations are shown in figure 13 with respect to Mercury’s true anomaly. As can be
seen, SRP is the dominant effect, INF and TRPmaximum values are in the order of 25 % of the SRP
and ALB is mostly negligible. Since TRP, INF and ALB increase for Mercury true anomalies above
180o, the sum of all thermal effects can be up to 50 % of the SRP. In total a maximum disturbance in
the order of μm/s2 results from the sum of all solar and thermal effects. Note that these results are
highly dependent on the spacecraft and planet orbits since in particular the evolution of the thermal
forces depends on the orientation of the spacecraft to the planet terminator.
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Figure 12. Numerical results for perturbations in evaluation test cases. Upper left:
ωpl = 10o, Upper right: ωpl = 98o, Lower left: ωpl = 189o, Lower right: ωpl = 279o

Red: SRP, Blue: INF, Yellow: ALB, Green: TRP
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Figure 13. Numerical results for maximum disturbances acting on Messenger during
Mercury year. Red: SRP, Blue: INF, Yellow: ALB, Green: TRP
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CONCLUSION

In this paper a new numerical method for the analysis of thermal perturbations acting on space-
craft surfaces has been introduced. For specific test cases the resulting perturbation magnitudes have
been compared to analytical solutions. By this, the performance of the numerical methods has been
evaluated. The evolution and magnitude of SRP, INF, ALB and TRP has been analyzed in detail for
specific configurations of planet and spacecraft. Furthermore the evolution of the mean perturba-
tions (averaged over one spacecraft orbit) as well as the minimum and maximum values have been
computed for a full Mercury year. Results show that for close distances to planet and sun the sum
of the treated perturbations reach μm/s2 magnitude. With a spacecraft mass of msc = 700 kg this
leads to a total perturbation force of 10−4 N magnitude, which has a significant influence on the
spacecraft trajectory.

The modelling method introduced in this paper can be used for any spacecraft architecture orbit-
ing any planet within the solar system. Due to the cell approach, spacecraft and planet modelling
accuracy is greatly improved with respect to analytical approaches. Hence, the feasible modelling
accuracy is mainly limited by the available computational power but not by the approach itself.
Furthermore, the numerical integration of the trajectories of both planet and spacecraft enables the
inclusion of the computed perturbations as disturbance accelerations on the calculated trajectory
thus changing the Keplerian elements over time. In conclusion, the GENERIC model provides a
powerful tool for the analysis of the effects of solar and thermal perturbations on spacecraft orbits.
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