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The recovery from a flat-spin motion represents one of the most impressive practical
applications in the field of spinning-satellite dynamics. The present paper presents flat-
spin recovery maneuvers by means of a body-fixed torque within the plane perpendicular
to the maximum principal axis of inertia. The conditions for a successful recovery are
established. These are quite different from those obtained in the case when the torque is
along the minimum axis of inertia where a minimum torque level is required for a
successful recovery. If the torque component along the intermediate axis is negative, a
recovery from a pure flat spin can be established for any torque magnitude. However, the
time to recovery increases indefinitely when this torque component approaches zero.
During the recovery maneuver, the angular velocity and angular momentum vectors
become aligned with the minimum axis of inertia by turning over about 901 in the body
frame. In inertial space, however, the angular momentum stays in the vicinity of its
orientation before the start of the recovery.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The problem of flat-spin recovery made its appearance
when spinning satellites had to perform orbit injection
maneuvers into their final mission orbit or trajectory after
having been launched in a transfer or parking orbit.
Therefore, spacecraft were equipped with a rocket motor
and in most cases the spacecraft-motor configuration
became prolate. Hence, it was spinning about the mini-
mum axis of inertia. In the presence of dissipation (e.g.,
fuel slosh, vibrations) and in the absence of an active
stabilization mechanism, the spacecraft would reorient
itself and end up spinning about its maximum axis of
inertia as illustrated in Fig. 1. We call this state ‘pure flat
ll rights reserved.
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spin’ or ‘flat spin’ depending on the presence of nutation
about the maximum axis. The re-establishment of a spin
about the minimum axis is called ‘flat-spin recovery’.

One of the first papers about flat-spin recovery is by
Barba et al. [1] (1973) and focuses on the SMS meteor-
ological satellite. In the first part, a recovery procedure
using a pure spin-up torque about the minimum axis is
analyzed. For an asymmetric satellite they find that the
torque must exceed a critical value to make the recovery
possible. However, their derivation of the critical value
uses the assumption of a symmetrical satellite. As a
consequence, their critical value is unfortunately too low
for an asymmetric satellite. Also they develop a recovery
procedure using the available thrusters on SMS. The
analysis is done by numerical simulations and illustrates
very well the practical implementation of a recovery.

The model they use is a special case of the mathematical
problem known as the self-excited rigid body (SERB) [2–5].
in recovery of spinning satellites by an equatorial torque,
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Fig. 1. Visualization of possible flat-spin attitude sequences.
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This field of research deals with the dynamics of a spinning
body subject to a torque with constant components in the
body's coordinate frame. Progress in mathematical methods
in this field can be useful for the design of efficient recovery
procedures and other satellite dynamics applications as
shown more recently by Longuski and Tsiotras [6].

Cronin (1978) [7] derives the correct value for the
critical torque about the minimum axis of inertia of an
asymmetric body for initial conditions of a pure flat-spin.
Livneh and Wie [8,9] find the same result in modern
terminology together with a complete discussion of tor-
ques on any of the principal axes.

As illustrated in Fig. 1, a transition into a flat spin may
result in a positive or negative spin about the major axis of
inertia. Rahn and Barba [10] show how the desired orienta-
tion of a spacecraft entering into a flat-spin can be achieved
by two thruster impulses.

Recovery procedures based on a torque motor, as opposed
to thrusters, have also been investigated [11,12]. In these cases,
the SERB model is replaced by the dual-spin dynamical model.

In a previous paper [13] we present analytical results
for the flat-spin recovery under a body-fixed torque
pointing along the minor principal axis for arbitrary initial
nutation conditions. We derive a solution in the form of a
generalized pendulum equation for the increasing angular
velocity along the torque axis in the body frame. Thus, the
motion is similar to that of a pendulum which is either
oscillating (no recovery) or revolving (recovery) with
increasing angular velocity. The minimum torque level
that guarantees a flat-spin recovery occurs precisely at
the transition between these two cases. Also we found that
the minimum required torque level for a recovery depends
on the nutation phase angle. Approximate analytical
results show the motion in inertial coordinates.

The pendulum-type solution follows from the existence
of two first integrals. The first integration constant states
that the amplitude of the rotational motion in the plane
perpendicular to the torque remains constant. Ref. [13]
Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-spi
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presents explicit results for the decrease in the nutation
angle after the recovery.

In this paper, we consider bodies with three different
moments of inertia subjected to a more general torque
acting within the plane normal the maximum inertia axis.
In this case, only one first integral is available and no
pendulum-like solution can be constructed. Thus, we
study here only recovery strategies that start from a pure
flat-spin situation, i.e. in the absence of nutation.

In the present case, the transition to the flat-spin
recovery does not need to happen in the first revolution
as was the case for a torque about the minimum-inertia
axis in Ref. [13]. When the torque component on the
intermediate axis is negative, the angular velocity along
the major axis shows a secular decrease and the transition
to a rotation about the minimum inertia axis will occur
eventually. For a given torque magnitude, we can establish
the optimum orientation of the torque that minimizes the
time until the transition.

2. Dynamical equations of motion

The motion of an asymmetric rigid body under a
constant body-fixed torque is described by the Euler
equations [14]:

A _ω1þ C−Bð Þω2ω3 ¼ T1 ð1aÞ

Bω ̇2− C−Að Þω1ω3 ¼ T2 ð1bÞ

Cω ̇3þ B−Að Þω1ω2 ¼ T3 ð1cÞ
Here, the dot denotes the time-derivative, ωj are the

components of the rotation vector ω. The subscripts j¼1,
2, 3 refer to the x, y, z principal body axes that are
associated with the principal moments of inertia A, B,
and C, respectively, and satisfy the following sequence:

AoBoC ð2Þ
n recovery of spinning satellites by an equatorial torque,
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The torque vector T has components Tj along the
principal axes, see Eqs. (1a)–(1c). We consider here the
specific case when T140, T2 may have either sign, and T3
vanishes. In the presence of torques, the rotational energy
E and the modulus of the angular momentum vector H¼ |
H| are the same physical quantities as in the torque-free
case but become functions of time t:

E tð Þ ¼ 1
2

Aω2
1þBω2

2þCω2
3

� � ð3aÞ

H2ðtÞ ¼ A2ω2
1þB2ω2

2þC2ω2
3

n o
ð3bÞ

In the presence of an arbitrary torque vector T, it
follows from Eqs. (1a)–(1c) that the rates of change of
the rotational energy E and the angular-momentum-
squared H2 are given by

d
dt

Eð Þ ¼ω �T; d
dt

H2
� �

¼ 2 H�Tð Þ ð4a;bÞ

Thus, the energy remains unchanged if the torque vector
acts perpendicular to the rotation vector. Likewise, the
modulus of the angular momentum vector remains con-
stant if the torque vector acts perpendicular to the angular
momentum vector.

From the definitions of E(t), H(t) and the conditions
stated in Eq. (2) we find that, for a given value H(t), the
corresponding energy E(t) lies within the range:

EminðtÞ ¼
H2ðtÞ
2C

oEðtÞoH2ðtÞ
2A

¼ EmaxðtÞ ð5Þ

The range of energy values in Eq. (5) can be separated in
two intervals as visualized in Fig. 2. We define the motion
to be spinning about

ðaÞ z�axis; if : EminðtÞoEðtÞoH2ðtÞ
2B

¼ EsepðtÞ ð6aÞ

ðbÞ x�axis; if : EsepðtÞoEðtÞo EmaxðtÞ ð6bÞ
where ‘sep’ denotes the separatrix, see Fig. 2.

We consider an arbitrary torque that has been acting
during the interval 0rτrt and terminates at time t.
When the instantaneous values E(t) and H(t) satisfy
Eq. (6a), we have

ΔEsep tð Þ ¼ Esep tð Þ−E tð Þ ¼ 1
2B

C C−Bð Þω2
3−A B−Að Þω2

1

� �
40 ð7Þ

and the body is still spinning about its major inertia axis z
as it does from the start at τ¼0.
Fig. 2. Constant energy levels on the angular momentum sphere.
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On the other hand, if ΔEsepo0, Eq. (6b) shows that the
body is already spinning about its minor inertia axis (x).
Thus, the condition ΔEsep¼0 characterizes the transition
from a rotation about the maximum inertia (z) to a
rotation about the minimum inertia axis (x). Therefore, it
is the goal of a recovery maneuver to achieve ΔEsepo0.

The rate of change ofΔEsep (t) follows by combining the
results of Eq. (7) and Eqs. (4a) and (4b):

Δ _EsepðtÞ ¼ _EsepðtÞ� _EðtÞ ¼ 1
2B

dðH2Þ
dt

� _EðtÞ

¼ H
B
�ω

� �
�T¼ � B�A

B

� �
ω1T1 ð8Þ

Thus, the rate of change of ΔEsep (t) depends only on
the torque component T1 and not on T2. Because we
assume T140, ΔEsep (t) decreases as long as ω140. Once
the body starts spinning about the minor principal axis,
ω140 keeps its sign so that a continuing spin-up is
guaranteed.

A similar quantity that also plays an important role is
the (positive) difference between the maximum possible
energy Emax¼H2/(2A), which is compatible with the actual
instantaneous angular momentum H(t), and the actual
instantaneous energy E(t):

ΔEmaxðtÞ ¼
H2ðtÞ
2A

�EðtÞ ¼ 1
2A

BðB�AÞω2
2þCðC�AÞω2

3

� � ð9Þ

Similarly as for ΔEsep, the rate of change of ΔEmax can
be calculated as follows:

Δ _EmaxðtÞ ¼ _EmaxðtÞ� _EðtÞ ¼ 1
2A

dðH2Þ
dt

� _EðtÞ

¼ H
A
�ω

� �
�T¼ B�A

A

� �
ω2T2 ð10Þ

Thus, the rate of change of ΔEmax (t) depends only on the
torque component T2.

3. Torque about minimum axis of inertia

The case when the torque component T1a0 (and
T2¼T3¼0) was investigated in a previous paper [13] by
the authors. Here, we follow a different approach that
facilitates the comparison with the present model where
both T1 and T2a0 and with its results that turn out to be
very different.

When T2¼0, Eq. (10) shows that the quantity ΔEmax,
which is a particular linear combination of the rotational
energy and the (modulus of the) angular momentum,
remains constant. Thus, ΔEmax (t)¼ΔEmax (0)¼ΔE0 is a
first integral of the system in Eqs. (1a)–(1c) in this case.

Eq. (9) indicates that the projection of the angular
velocity vector on the y, z-plane describes an ellipse with
constant semi-major axis a on the y-axis and semi-minor
axis b on the z-axis:

a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A ΔE0
BðB−AÞ

s
4 b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A ΔE0
CðC−AÞ

s
ð11a;bÞ

The parametric equations of this ellipse and its deriva-
tives are given by

ω2ðtÞ ¼ a cosuðtÞ; ω3ðtÞ ¼ b sinuðtÞ ð12a;bÞ
in recovery of spinning satellites by an equatorial torque,
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Fig. 3. (a) Evolution of ω1(u) for case ω1040. (Inputs: A¼200; B¼300;
C¼400 kg m2; ω10¼2.070; ω20¼0; ω30¼5 rpm). (b) Evolution of ω1(u) for
case ω10o0. (Inputs as in Fig. 3a except for ω10¼�2.070).
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ω ̇2ðtÞ ¼ −a _uðtÞ sinuðtÞ; ω ̇3ðtÞ ¼ b _uðtÞ cosuðtÞ ð12c;dÞ
When inserting these expressions in the Euler Eqs. (1b)

and (1c) we obtain a surprisingly simple relationship
between u and ω1:

_uðtÞþnsω1ðtÞ ¼ 0 with ns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB�AÞðC�AÞ

BC

r
ð13a;bÞ

Thus, the variable u is proportional to the total turning
angle

R
ω1(τ)dτ about the x-axis.

Eq. (13a) is the key to an analytic solution in u. First, it
allows adopting u as the independent variable in Eq. (8):

dðΔEsepÞ
du

¼ 1
ns

B−A
B

� �
T1 ) ð14aÞ

ΔEsep uð Þ ¼ΔEsep u0ð Þþ 1
ns

B−A
B

� �
T1 u−u0ð Þ ð14bÞ

The transition to a spin about the x-axis occurs at
ΔEsep¼0. When starting from a pure flat-spin motion
about the z-axis, we find from Eq. (7):

ΔEsep;f s u0ð Þ ¼ C C−Bð Þ
2B

ω2
30 with: u0 ¼

π

2
ð15a;bÞ

The linear relationship in Eq. (14b) has only one solution
Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-spi
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(see also Eq. (28b) of Ref. [13]), namely

usep ¼ π

2
−
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C C−Að Þ
B B−Að Þ

s
C−Bð Þ
T1

ω2
30 ð15cÞ

In order to investigate whether the value usep is reached
or not, we insert the derivative of Eq. (13a) in the first
Euler Eq. (1a). This produces a second-order differential
equation for u(t):

€u� C�Bð ÞΔE0
BC

sin ð2uÞþns
T1

A
¼ 0 ð16Þ

Eq. (16) has the structure of the forced nonlinear
pendulum equation. For a flat-spin recovery, it is necessary
that ω140 continues to increase. According to Eq. (13a),
this implies that the solution u(t) must continue to
decrease and therefore an ongoing clockwise spin-up
about the body's x-axis. When the solution in u is
bounded, the pendulum is oscillating and there is no
recovery. In this case, the motion is described by just a
segment of the line ΔEsep (u), see Ref. [13].

The first Euler Eq. (1a) gives now also the exact solution
ω1(u) and allows the derivation of the minimum torque
level T1

n
that guarantees an unbounded solution for u and

ω1. These results have been derived in detail in Ref. [13]
and are summarized as follows:

ω2
1 uð Þ ¼Ω2

c

n2
s
−

C−Bð ÞΔE0
BCn2

s
cos 2uð Þ− T1

Ans
2uð Þ

ω2ðuÞ ¼ a cosu ð17a� cÞ

ω3ðuÞ ¼ b sinu

with

Ω2
c ¼ n2

sω
2
10þ

1
2

n2
i ω

2
20�n2

tω
2
30

	 
þ2ns
T1

A
u0 ð17dÞ

n2
s ¼

B−Að Þ C−Að Þ
BC

ð17eÞ

n2
t ¼

C−Bð Þ C−Að Þ
AB

ð17fÞ

n2
i ¼

C�Bð Þ B�Að Þ
AC

ð17gÞ

The constant Ωc
2
is a second integral of motion found by

substituting Eqs. (12a)–(12d) in Eqs. (1).
Fig. 3 show two illustrative examples of a recovery

under the indicated input data. If the torque ceases to act
when ω1¼0 we find from Eq. (7) that ΔEsep¼Esep – E40
and, according to Eq. (6a), the resulting free motion is still
a nutation about the z-axis. The transition to a spin about
the x-axis occurs later at the crossing of ΔEsep¼0, which
corresponds to usep¼10.931 (ouω1¼0) when using
Eq. (15c). We note that the derivative of ω1(u) has a
discontinuity at ω1¼0, which may be avoided by using
the quadratic formula in Eq. (17a).

Fig. 4 show the behavior when the torque T1
approaches its critical value T1

n
for pure flat-spin initial

conditions, i.e. ω10¼ω20¼0. Theoretically, the time to the
transition (or the period of the periodic solution if there is
no recovery) goes to infinity (i.e., there is no finite limit).
n recovery of spinning satellites by an equatorial torque,
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The vertical lines in Fig. 4 identify specific points of
interest, which are identified in Table 1.

The increase of these time intervals occurs with an
enormous sensitivity as illustrated in Table 1. On the flat
parts of the curves, the angular velocity is hardly moving
at all in the body frame and is close to an unstable
stationary solution. This remark is important for illustrat-
ing the continuity with the case T2a0.

The main properties for a recovery when using a torque
along the minimum axis are
i).
Fig.
rate

Tabl
Sum

T1

16
16
16

Pl
A

depending on the magnitude of the torque, a nutation-
type periodic spin-up/spin-down (see Fig. 4b) about
4. (a) Angular rates ωj(t), j¼1, 2, 3, in case of recovery. (b) Angular
s ωj(t), j¼1, 2, 3, in case of no recovery.

e 1
mary of results near boundary between recovery and no recovery.

(Nm) Result ΔEsep (

.22022035 Recovery 95.649

.22022034811 Recovery 112.83

.22022034810 No recovery –

ease cite this article as: F.L. Janssens, J.C. van der Ha, Flat-spin re
cta Astronautica (2015), http://dx.doi.org/10.1016/j.actaastro.2015
the z-axis or a continuing recovery spin-up about the
x-axis occurs;
ii).
 the transition to a spin-up about the x-axis can occur
only during the first revolution of the angular velocity
vector ω with steadily decreasing nutation during this
spin-up.

4. Torque in x, y-plane

In the present section we consider a torque within the
x, y-plane with components T140, T2a0. Eq. (10) indi-
cates that the first integral ΔEmax¼constant is no longer
available now. The most important consequence is that, in
this case, the transition does not need to occur within the
first revolution after the onset of the torque.

Figs. 5 and 6 show a typical recovery for the case T2¼T
sinαo0 with α¼�51 and T¼ |T|ooT1

n
, which is the

critical value for a torque about the x-axis. It was shown
in Refs. [15,16] that T2o0 implies a secular decrease in ω3

for an asymmetric body because the average value of ω3

decreases under nutation. This dynamical mechanism
leads to a transition followed by the spin-up about the
minimum axis of inertia. At the start of the recovery
maneuver the average decrease of ω3 is slow. An approx-
imate expression for the rate of decrease was derived
based on the non-zero average value of the product ω1ω2

while assuming a constant ω3 value (slowly varying
parameter) during the nutation period:

ω3 tð Þ≅ω30

ffiffiffiffiffiffiffiffiffiffi
1þ t

τ
3

r
ð18aÞ

with

τ¼ 2
3

C C−Að Þ C−Bð Þ
T2 B−Að Þ sin ð2αÞ

ω3
30 ð18bÞ

The structure of Eqs. (18a) and (18b) suggests the
following qualitative conclusions:
a)
 a spin-down occurs when �π /2oαo0 for any value
of the torque T;
b)
 the time to recovery goes to infinity when α
approaches �π /2 or 0;
c)
 when α40, Eqs. (18a) and (18b) predict a spin-up
about z but the correct interpretation is that the critical
torque T1

n
increases by an amount that depends on the

value of α.

Fig. 7 shows the very slow spin-down of ω3 during a
longer timeframe. After the recovery, the behavior is
comparable to the results observed [13] in the case T2¼0
t)¼0 at: ω1(t) (rad/s)

s Minimum 7�10�6 at 45.1 s
s Minimum 1�10�6 at 62.7 s

ω1¼0 at 61.5 s; Period is 126.5 s

covery of spinning satellites by an equatorial torque,
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Fig. 5. Simulation Results for |T|¼10 Nm; azimuth angle α¼�51.

Fig. 6. Simulation Results for |T|¼5 Nm; azimuth angle α¼�51.

Fig. 7. Simulation Results for |T|¼10 Nm; α¼�0.51; ΔEsep¼0 at
t¼2581 s.
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with adjusted average value of the angular velocity in the
y, z-plane.

Eq. (13a) is instrumental for changing the independent
variable from t to u. In this case, u keeps its meaning of
total turning angle about the x-axis and starts from 0 (i.e.,
not at the pure flat-spin initial value u0¼π/2). The Euler
equations (1) can now be written as (’ denotes d/du):

−Ans ω'1 ω1þ C−Bð Þω2 ω3 ¼ T1 ð19aÞ

−Bns ω'2 ω1þ A−Cð Þω1ω3 ¼ T2 ð19bÞ

−Cnsω'3þ B−Að Þω2 ¼ 0 ð19cÞ
After inserting Eq. (19c) in Eq. (19a) we find a total

differential and hence the following new first integral:

k1ω2
3−k3ω

2
1 ¼ k1ω2

30þ2k3t1u=ns ð20aÞ

with

k1 ¼
C�B
A

; k2 ¼
C�A
B

; k3 ¼
B�A
C

; t1 ¼
T1

A
ð20b� dÞ

Eq. (20a) represents a hyperbola with varying axes and is
merely a different form of Eq. (14b).

Under this change of independent variable, the linear
relationship in Eq. (14b) remains valid for u0¼0 and ΔEsep
Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-spi
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(usep)¼0 (see also Eq. (15c)) and we have

usep ¼−
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C C−Að Þ
B B−Að Þ

s
C−Bð Þ
T1

ω2
30 ¼ −

1
2
ω2
30
k1
t1

ffiffiffiffiffi
k2
k3

s
ð21Þ

When inserting u¼usep from Eq. (21) in Eq. (20a) we
obtain, as expected, k1ω2

3;sep ¼ k3ω2
1;sep, which is the

equation for the separation planes. Summarizing, we state
that the existence of usep shows that a transition to a spin
about the minimum axis always takes place when T1o0
and T240, which is a sufficient condition.

The second Euler equation shows that ω2 is described
by a harmonic oscillator, forced by ω1:

ω″
2þω2 ¼

t2
ns

ω0
1

ω2
1

 !
ð22aÞ

with

t2 ¼
T2

B
ð22bÞ

According to Eqs. (18a) and (18b) the minimum recovery
time for a given |T| is in the vicinity of α¼�451. For |T|¼
10 Nm, the azimuth angle of �39.51 gives the fastest
recovery time tsep.

Fig. 8a shows the angular velocity components for this
case. The recovery time is tsep¼68.68 s and is indicated by
the first dashed (red) vertical line. The respective ωj (j¼1,
2, 3) values at tsep are 0.2436, 0.3319, 0.1722 rad/s, respec-
tively. The second dashed (blue) vertical line in Fig. 8a is at
t¼75.47 s and corresponds to the first time that the ω3

component reaches zero.
Fig. 8b shows the projection of the angular velocity in

the y, z-plane. At the start, the value of ω2 becomes
slightly negative. When ω3 goes negative, the trajectory
appears to stabilize on an ellipse. The continuation of the
trajectory is comparable to the behavior observed in the case
T2¼0, see Ref. [13]. Fig. 8c shows the three-dimensional
representation of the angular velocity components for the
same case as in Fig. 8a and b.

Fig. 8d shows the behavior of ΔEmax (u). Initially, ΔEmax

decreases from its starting value of 54.83 Nm but it eventually
n recovery of spinning satellites by an equatorial torque,
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Fig. 8. (a) Results for |T|¼10 Nm; αopt¼�39.51; (b) projection of ω motion in y, z-plane. (c) 3-Dimensional illustration of vector ω; (d) evolution of ΔEmax to
a constant value. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Table 2
Summary of simulation results as function of |T|.

|T| (Nm) αopt (deg) tsep
(s)

1st Time ω3¼0
(s)

Final ΔEmax

(Nm)

12 �36 43.5433 48.8119 10.5
10 �39.5 68.680 75.470 6.8
8 �41 113.710 123.096 2.4
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stabilizes at about 6.84 Nm. In the case t2¼0 the term ΔEmax

would have remained constant at 54.83 Nm throughout.
Finally, Table 2 provides a summary of the character-

istic values related to the optimal direction angle αopt for a
few values of the torque magnitude. The results in Table 2
confirm that the magnitudes of equatorial torque vectors
are indeed smaller than the corresponding minimum
torque component (i.e., T1

n¼16.22 Nm) along the minimum
inertia axis found in Ref. [13].

In summary, we conclude that a feasible flat-spin
recovery can be constructed in the case when T140 and
T2o0. For a given torque level we can optimize the
azimuth angle α of the torque vector for the fastest
possible recovery. The recovery time must be shorter than
the time required for bringing the spacecraft in a flat spin
through energy dissipation.

5. Motion in inertial space

The motion of the body in inertial space has been
investigated by means of numerical integrations. The
Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-sp
Acta Astronautica (2015), http://dx.doi.org/10.1016/j.actaastro.2
inertial Z-axis is directed along the initial angular momen-
tum vector H and the inertial X-axis is taken along the
initial torque direction, which corresponds to the body x-
axis in the pure flat-spin case. The inertial Y-axis com-
pletes the dextral system of axes. In this paper, small
letters x, y, z refer to the principal body axes and capital
letters X, Y, Z refer to the inertial axes.

First, we describe the results for two representative
strategies aiming at recovery from a pure flat-spin situation.
The inertias and initial flat-spin rate are as in the
previous examples, i.e., ω10¼ω20¼0; ω30¼5 rpm. Table 3
in recovery of spinning satellites by an equatorial torque,
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Table 3
Torques and recovery times for two representative strategies.

Case T1 (Nm) T2 (Nm) Time (ΔΕsep¼0) (s) 1st Time ω3¼0 (s)

I. Torque along x-axis 16.2203 0 53.187 55.5266
II. Torque in x, y-plane 8 cos(�411) 8 sin(�411) 113.710 123.096

Fig. 9. (a) Angular velocities for ω3040 in body frame. (b) Angular
velocities for ω3040 in inertial frame. (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of
this article.)

Fig. 10. Angular momentum |H| and HZ.

Fig. 11. Projection of unit-vector H/|H| on X, Y-plane.
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summarizes the applied torques and corresponding
recovery times.

5.1. Case I torque along x-axis

Figs. 9a and b shows the motion of the angular velocity
components in the body frame and in the inertial frame,
respectively. In the body frame (see Fig. 9a) the angular
rateω1 reaches its minimum value at t¼32.9 s, i.e. the first
(gray) dashed vertical line. The transition occurs at
tsep¼53.2 s, i.e. at the second (red) dashed vertical line.
The rate ω3 decreases from the start and crosses zero at
Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-spi
Acta Astronautica (2015), http://dx.doi.org/10.1016/j.actaastro.2
t¼55.5 s, i.e. the third (blue) dashed vertical line. After-
wards, it starts oscillating.

In the inertial frame (see Fig. 9b) the rate ωZ keeps on
increasing and, after the recovery, its behavior is compar-
able toω1 in Fig. 9a. The vertical lines are identical to those
in Fig. 9a.

Fig. 10 shows the behavior of the modulus |H| of the
angular momentum vector with initial value of
209.44 kg m2/s along both the z and Z axes. Subsequently,
n recovery of spinning satellites by an equatorial torque,
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Fig. 12. Evolution of H-vector relative to inertial Z-axis.

Fig. 13. Evolution of angle between x-axis and Z-axis.

Fig. 14. (a) Angular velocity components in body frame. (b) Angular
velocity components in inertial frame. (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of
this article.)
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it increases continuously while transferring the momen-
tum to the x-axis. The component HZ along the Z-axis
follows with oscillations and the deviations of the vector H
from the Z-axis remain relatively small. Again, the vertical
lines are identical to those in Fig. 9a.

Fig. 11 shows the projection of the unit-vector H/|H| on
the X, Y-plane during the first 3 min of motion under the
same inputs as used in Fig. 10. The transition occurs just
before the 60-s mark shown in Fig. 11. Afterwards, the
spin-up causes a decrease of the nutation and H converges
towards a fixed direction. The final point of convergence is
about 0.16 distance away from the origin, which corre-
sponds to an offset angle of about 9.21.

Fig. 12 shows the angle between the angular momen-
tum vector and the Z-axis. During the first 50 s (i.e., before
the transition) this angle shows oscillations with ampli-
tudes of 4–51 about the limiting value of 9.21 as in Fig. 11.
Afterwards, while nutating about the x-axis, the amplitude
decreases fairly rapidly until it essentially dies out after
about 2 min.

Fig. 13 illustrates the transfer of the angular momentum
from the body x-axis to the inertial Z-axis, which starts
Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-sp
Acta Astronautica (2015), http://dx.doi.org/10.1016/j.actaastro.2
after the transition at about 53 s and is completed about a
minute later.

Figs. 10–13 provide informative insights on the recov-
ery for the case ω3040 but we confirmed that the results
for ω30o0 are very similar. Regardless of whether the flat
spin is about the plus or minus body z-axis (see Fig. 1), a
torque about the body þx-axis always restores the body x-
axis in the neighborhood of the angular momentum vector
(Z) before the onset of the dissipation (provided that the
torque level exceeds a certain critical value).
5.2. Case II torque in x, y-plane

Fig. 14 are the counterparts of Fig. 9. The torque level |T|¼
8 Nm is much smaller than the critical value T1

n¼16.22 Nm in
Case I and the torque direction angle for Case II is α¼�411
(see Table 3). We observe the gradual decrease of ω3 and ωZ

during several revolutions. As in Case I, the behavior of ωZ

after the recovery becomes comparable to that of ω1. The
dashed (red) vertical line at 113.71 s shows where the
transition (ΔEsep¼0) occurs and the dashed (blue) line at
123.1 s is at the first zero crossing of ω3.
in recovery of spinning satellites by an equatorial torque,
015.05.011i

http://dx.doi.org/10.1016/j.actaastro.2015.05.011
http://dx.doi.org/10.1016/j.actaastro.2015.05.011
http://dx.doi.org/10.1016/j.actaastro.2015.05.011


Table 4
Examples of recovery/no recovery for positive α angles.

|T| α (deg) for recovery α (deg) for no recovery

16.25 0.1 0.25
16.30 0.5 0.70
16.50 1.5 2.0
18 10 13
20 18 20
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Fig. 15 shows that, after the recovery, the offset angle of
the angular momentum vector with respect to the Z-axis
decreases from about 171 and eventually stabilizes at about
41. Fig. 15 also shows the convergence of the offset angle of
the x-axis relative to the Z-axis to the same limiting value
but at a much slower rate. The identical asymptotic offset
angles for the H-vector and x-axis are induced by the
decrease of the nutation.

Fig. 16 shows the projection of the unit-vector H/|H| in
the X, Y-plane. It starts circling with an increasing radius
about a center on the Y-axis until the recovery. Afterwards,
it circles with a shrinking radius about a center at (�0.025,
0.058), which corresponds to an offset of about 3.61 from
the Z-axis. The final offset angle is smaller than the 9.21
offset in Case I in Fig. 11.

Finally, we mention that a torque with a positive
component along the y-axis must have a magnitude above
the critical value to guarantee the flat-spin recovery. Its
level depends on the positive offset angle α of the torque
vector. Table 4 shows a few examples.
Fig. 15. Orientations of body x-axis and H-vector relative to Z-axis.

Fig. 16. Projection of unit-vector H/|H| on X, Y-plane.

Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-spi
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5.3. Attitude matrix

The observed properties of the flat-spin recovery
strongly advocate the use of the 1–2–1 rotation sequence
[17] (see Fig. 17) because the results show that the first and
second rotation angles, which define the orientation of the
x-axis, stabilize asymptotically about a constant value. In
addition, the third rotation accounts for the spin-up about
the body x-axis. A first rotation φ¼180o about X followed
by a rotation θ¼901 about Y1 brings the initial x(¼X)-axis
onto the Z-axis. These two rotation angles may then
stabilize on the values 1801�εφ and 901�εθ where εφ
and εθ designate small angles.

The attitude matrix [17] AT corresponds to the 1–2–1
rotation sequence and maps a vector VB from the body
frame into the vector VI within the inertial frame:

VI ¼ ATVB ð23aÞ
with

AT ¼
cθ sθsψ sθcψ

sθsφ �cθsφsψþcψcφ �cθsφcψ�sψcφ
�sθcφ cθcφsψþcψsφ cθcφcψ�sψsφ

2
64

3
75
ð23bÞ

where c and s stand for the cosine and sine functions,
respectively.

The inertial representation of the x-axis is

xI ¼ cθ sθsφ �sθcφ
h iT

ð24Þ

This result contains only the rotation angles φ and θ while
ψ is absent. The asymptotic orientation of the x-axis can
now be expressed in the small deviation angles εφ¼π–φ
and εθ¼π⧸2�θ:

xIffi εθ εφ 1
h iT

ð25Þ

In the following section we establish asymptotic values
of εφ and εθ for t, um-1 by means of an approximate
model that replaces the later part (i.e., after the recovery)
of the curves in Figs. 9–15. For the results of Case I (i.e.,
when the torque acts only along the x-axis) the model can
be formulated in terms of Fresnel integrals. Fig. 8d indi-
cates that this approximate model may also be adapted to
Case II by introducing an appropriate constant value for
ΔEmax.

Fig. 18 shows the evolution of the angles for Case I.
Initially, the angle φ grows fast but then stabilizes on a
value close to 7π after the recovery has been established
(i.e., after crossing ω3¼0 at 55.5 s, see Fig. 9a). Afterwards,
the ongoing spin-up occurs in the increasing ψ angle. The
n recovery of spinning satellites by an equatorial torque,
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Fig. 17. The 1–2–1 sequence of rotations.

Fig. 18. Evolutions of angles φ, θ, and ψ for Case I (see Fig. 9a).

Fig. 19. Comparison of exact and approximate functions ω1
2
(um).
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θ angle stays within the range [0, π] and stabilizes on a
value close to π/2. The dashed vertical lines in Fig. 18
indicate successive downwards passages of ω3

through zero.
5.4. Asymptotic model for attitude angles

The derivation of the asymptotic values for the angles
εφ and εθ makes use of the kinematic equations [17] based
on the 1–2–1 sequence in Fig. 17. Furthermore, the
independent variable u is replaced by um¼�u with u¼u
(t) defined by its differential equation in Eq. (13a):

sinθ
	 


φ ̇¼ ω3 cosψþω2 sinψ )

sinθ
	 


φ'¼ 1
nsω1

ω3 cosψþω2 sin ψð Þ ð26aÞ

_θ¼−ω3 sinψþω2 cosψ )

θ'¼ 1
nsω1

−ω3 sinψþω2 cos ψð Þ ð26bÞ

ψ ̇¼ω1− cos θ
	 


φ ̇ ) ψ '¼ 1
ns
− cos θ
	 


φ' ð26cÞ

where 0 denotes d/dum and the analytical results forωj(um),
j¼1, 2, 3, are given in Eqs. (17a)–(17c).

After the transition to the flat-spin recovery has taken
place, the amplitudes a and b (of ω2 and ω3, respectively)
may be replaced by their mean value oω234¼
oω2

2þω3
2

41/2. Eqs. (26a) and (26b) may now be
Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-sp
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simplified as

sinθ
	 


φ'≅
〈ω23〉

nsω1ðumÞ
sin ψ−umð Þ ð27aÞ

θ0ffi ω23h i
nsω1ðumÞ

cos ψ�um
	 
 ð27bÞ

with

〈ω23〉≅〈ω2
2þω2

3〉
1=2 ¼ 1

2π

Z um þ2π

um

ω2
23ðsÞ

� �
ds

( )1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2

2

s

ð27cÞ
When starting from a pure flat-spin (i.e., um0¼�π/2) Eq.
(27c) becomes

〈ω23〉pure f s ¼
ω30ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þCðC−AÞ

BðB−AÞ

s
¼ω30ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk2

k3

s
ð27dÞ

Thus, the ellipse described by ω2 and ω3 is now replaced
by an approximate circular motion.

The second approximation is to replace the result for
ω1 in Eq. (17a) by

ω1ðumÞffi
1
ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c þ2t1nsum

q
ð28Þ

where the periodic term cos(2um), which averages to zero,
has been neglected.

Fig. 19 shows that the approximate expression given in
Eq. (28) may be acceptable for sufficiently large values of
um. At the points um,k¼π/4þkπ⧸2 (for k¼0, 1, …) the
in recovery of spinning satellites by an equatorial torque,
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Fig. 20. Comparisons of linear approximations of angle ψ(um).

Table 5
Summary of Simulation Results for angles φ, θ, ψ at um¼2kπ.

um (deg) t (s) φ (deg) εφ (deg) θ (deg) εφ (deg) ψ (deg)

0 55.55 247.5 �67.5 61.9 28.1 1270
360 69.95 151.6 28.4 55.4 34.6 2464
720 77.66 200.4 �20.4 87.9 2.1 3424

1080 83.69 151.0 29.0 105.0 �15.0 4357
1440 88.80 182.3 �2.3 70.7 19.3 5278
1800 93.33 164.6 15.4 108.4 �18.4 6192
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approximation of Eq. (28) is exact. In general, however, the
true ω1(um) oscillates around the approximate value.

For values of um past the transition to a spin about the
x-axis, the simulations show that Eq. (26c) may be ade-
quately approximated by the linear relationship:

ψ ðumÞffiψ ðum;ref Þþ
um�um;ref

ns

� �
¼ ~ψ þum

ns
ð29aÞ

with

~ψ ¼ψ ðum;ref Þ�
um;ref

ns
ð29bÞ

Fig. 20 shows the comparisons of three linear approx-
imations with different reference points (i.e., um,ref ¼0, 2π,
4π) with the exact expression in Eq. (26c). We conclude
that, as expected, the highest um,ref (i.e., continuous black)
line produces the most accurate approximation.

The approximation in Eqs. (29a) and (29b) is not
obvious. When θ is near π/2 the cosθ term of Eq. (26c) is
small. The term φ0, however, is not small as εφ oscillates
fast with small amplitude about π�mod(φ, 2π). We note
that the slopes of the approximations differ slightly from
the slope of ψ(um).

After incorporating all of these simplifications into Eqs. (26a)
and (26b) we find a decoupled equation for θ(u). For θ near π /2
the equation for φ also decouples in first-order approximation
so that

θ' umð Þ ¼ oω234
cos ~ψ þck umð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c þ2t1nsum

q ð30aÞ

φ0ðumÞ ¼ oω234
sin ~ψ þckum
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c þ2t1nsum

q ð30bÞ

with

ck ¼
1
ns

�1 ð30cÞ

It is straightforward towrite Eqs. (30a) and (30b) in terms of the
small deviations εθ¼π⧸2�θ and εφ¼π�φː
Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-spi
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ε'ϑ umð Þ≅−〈ω23〉
cos ~ψ þckumð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c þ2t1nsum

q ð31aÞ

ε0φðumÞffi� ω23h i sin ~ψ þckum
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c þ2t1nsum

q ð31bÞ

The solutions of the differential equations of the type in
Eqs. (31a) and (31b) are expressed as follows:

εθðumÞ≅εϑ;ref−F〈ω23〉 cos d CðzmÞ−Cðzref Þ
� ��

− sin d SðzmÞ−Sðzref Þ
� ��

εφðumÞ≅εφ;ref−F〈ω23〉 cos d SðzmÞ−Sðzref Þ
� ��

þ sin d CðzmÞ−Cðzref Þ
� �� ð32a;bÞ

where

C xð Þ ¼
Z x

0
cos

π

2
z2

� �n o
dz ð33aÞ

SðxÞ ¼
Z x

0
sin

π
2
z2

� �n o
dz ð33bÞ

are the Fresnel integrals with the arguments defined by

zm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ck

πt1ns
Ω2

c þ2t1nsum
	 
r

ð34aÞ

zref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ck

πt1ns
Ω2

c þ2t1nsum;ref

� �r
ð34bÞ

The remaining constants and coefficients appearing in
Eq. (32a,b) are defined as follows:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

π

ckt1ns

r
ð35aÞ

c¼ cos d ð35bÞ

s¼ sin d ð35cÞ

d¼ ~ψ �ckΩ
2
c= 2t1nsð Þ ð35dÞ

By using the well-known [18] property that both C(x)
and S(x)-0.5 when x-1, we obtain the asymptotic
values εθ,1 and εφ,1 from Eq. (32a,b) when substituting
zm-1:

εθ;1-εϑ;ref þF〈ω23〉 Cðzref Þ cos d
�

−Sðzref Þ sin d−ð cos d− sin dÞ=2� ð36aÞ

εφ;1-εφ;ref þF〈ω23〉 Cðzref Þ cos d
�

þSðzref Þ sin d−ð cosdþ sin dÞ=2� ð36bÞ
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Fig. 21. Angular results from asymptotic model as function of um,ref.
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5.5. Summary of numerical results

Table 5 summarizes the results for the angles φ, θ, ψ at
the points um,k¼2kπ obtained by numerical integration as
in Fig. 18. Also the small deviation angles εφ¼π�φ and
εθ¼π⧸2�θ are tabulated in Table 5. The separatrix is
crossed at t¼53.2 s, which is just before um¼0 (see Fig. 9a).
Thus, Table 5 contains only results from after the transition
to a spin about the x-axis.

Table 5 provides the inputs for the asymptotic model in
the previous section. Each of the um entries in the left
column is used as a starting point (i.e., um,ref) for the
integrated results of εφ and εθ in Eq. (32a,b). The asso-
ciated initial conditions εφ,ref and εθ,ref are also given in
Table 5.

The resulting asymptotic values εφ,1 and εθ,1 are given
in Eqs. (36a) and (36b) and illustrated in Fig. 21. It can be
seen that the asymptotic value εφ,1 remains steady from
um,ref ¼7201 onwards and converges to 9.21, which agrees
with the result shown in Fig. 12. Similarly, we find that the
asymptotic value εθ,1 converges to 0.321 but it keeps
oscillating within a range of about 0.81.

6. Conclusion

This paper studies the recovery from a flat-spin situa-
tion by means of a continuous torque in a plane perpen-
dicular to the maximum axis of inertia. The main result is
that, as long as the torque has a positive component along
the desired spin axis (i.e., the minimum axis of inertia), a
flat-spin recovery can always be achieved by a negative
torque component along the intermediate axis. From
previous work it is known that, for a torque aligned with
the minimum inertia axis, there exists a critical minimum
level that the torque must exceed in order to achieve a
recovery. Here, a sufficient condition for recovery is
Please cite this article as: F.L. Janssens, J.C. van der Ha, Flat-sp
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established for a torque in the plane normal to the
maximum inertia axis, namely that the torque component
along the intermediate axis of inertia must be negative.
There is no restriction on the torque's magnitude but the
time to recovery increases indefinitely when this torque
component approaches zero. For a given torque level,
there exists an optimum orientation angle between the
two torque components that minimizes the recovery time.
During a recovery under this strategy, the angular momen-
tum vector remains in the vicinity of its direction before
starting the recovery. Finally, also a useful approximate
model is presented that predicts the asymptotic deviation
of the spin-axis attitude orientation in inertial coordinates.
These new results have significant implications for the
design of flat-spin recovery strategies for satellites that are
required to be spinning about their minor axes of inertia.
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