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The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of

internal dampedmassmotion. It is known that prolate and oblate satellite configurations can be stabilized by damped

mass motion. Here, the stability boundaries are established by exploiting the properties of the complex characteristic

equation and the results are interpreted in terms of the physical system parameters. When the thrust level is the only

free parameter, both prolate and oblate satellites can be stabilized provided that the thrust is within a specified range.

This result is in contrast to the well-knownmaximum-axis rule for a free spinner where damping is always stabilizing

(destabilizing) for an oblate (prolate) satellite.When adding a suitable spring-mass system, theminimum value of the

spring constant that stabilizes the configuration can be established. In practice, however, the dampingmaywell be too

weak to be effective. Numerical illustrations are presented for the actual parameters of the Ulysses prolate

configuration at orbit injection as well as for a fictitious oblate system. Finally, a new derivation of a previously

established first integral for the undamped system is offered and its properties as a Lyapunov function are discussed.

I. Introduction

I NA previous paper [1], the authors investigated the stability of a
spinning body under axial thrust and augmented it with a mass-

spring system. The point mass is nominally located on the spin axis
and canmove in a plane perpendicular to the spin axis but is restrained
by the spring. This model was proposed by Mingori and Yam [2] for
understanding the instability that occurred during the firing of apogee
boost motors, where slag could accumulate in an imbedded nozzle.
They analyze the stability of this system by using the linearized
equations (Lyapunov direct method) about the reference motion
consisting of a uniformly spinning system, with the mass particle
located on the spin axis. Furthermore, they obtain a stability diagram
[2] in terms of two nondimensional parameters, that contains
an oscillatory stable and an unstable region. More recently [1], the
region of oscillatory stability has been interpreted in terms of
the physical parameters. However, the oscillatory stability of the
linearized system does not assure the stability of the original
nonlinear system.
Subsequent studies have added damping to this mass-spring

system. Halsmer and Mingori [3] use Lyapunov’s second or indirect
method by constructing a Lyapunov function, whereas Yam et al. [4]
use a special method to evaluate the roots of the characteristic
equation with complex coefficients. (Here, we follow the Hughes [5]
terminology for Lyapunovmethods.) The results show that the region
of instability increases dramatically and that part of the remainder of
the previously oscillatory stable area turns into a region where the
damping guarantees asymptotic stability. This conclusion is valid for
both prolate and oblate systems, which contrasts with the familiar
maximum-axis rule for a freely spinning body. Therefore, the quoted
papers [3,4] no longer interpret the augmented particle as slag but

consider the spring-mass-damper system as nutation damper. This
approach will also be followed here. It is important to note that the
asymptotic stability of the linearized system does guarantee the
stability of the reference motion for the full nonlinear system [5].
The dynamics presented in this paper holds for any space vehicle

that is subjected to an axial thrust force and that has internal damping.
In practice, the most relevant applications are for satellites with an
attached upper stage or solid rocket motor, and this is the configu-
ration studied here. The focus is on the most common situation when
the particle is located aft of the system c.m. The paper investigates
the stability of the linearized system including damping by analyzing
the roots of the characteristic equation as in Yam et al. [4]. The
characteristic equation is written as a polynomial of order three with
complex coefficients. In this form, the Routh–Hurwitz or Lienard–
Chipart stability theorems cannot be used because they apply only to
equations with real coefficients. Gantmacher [6] offers a general-
ization for equationswith complex coefficients, but not all conditions
required by this theorem are satisfied here.
Yam et al. [4] discuss the appearance and disappearance of the

negative real parts of the roots by a special perturbation method with
complex coefficients. Our approach starts by replacing the charac-
teristic equation by an equivalent system of two equations for its real
and imaginary parts, respectively. This system contains only real
coefficients and has the real σ and imaginary ω parts of the complex
variable p � σ � jω as real variables. The two equations are consid-
ered as polynomials in σ with coefficients containing the system
parameters and ω. These equations allow zero solutions in σ when
their constant terms vanish. The two conditions for having σ � 0
imply that the frequencyω can take only twovalues, namely, zero and
the nutation frequency of the system.
The proposed approach facilitates the straightforward analysis of

the sign changes of the real parts of the roots by using a linearization
procedure about the solutions σ � 0 and the two permissible values
ofω. In the first case, bothω and σ vanish and the zero solution of the
undamped case is recovered. Both admissible ω solutions define
families of straight lines in the stability diagram that separate the
solutions σ > 0 and σ < 0. The combination of these results leads to
an open triangular area between the two straight lines, where all σ
values are negative in the prolate case. In the oblate case, however,
this area may have a different shape because of the condition that the
thrust must be positive. The ensuing asymptotically stable domain
confirms and clarifies previous results [3,4].
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The qualitative conclusions established by Halsmer and Mingori
[3] for a prolate spinner are confirmed and extended further. In
particular, the minimum value of the spring constant that achieves
stability is associated with a specific minimum thrust level. For larger
values of the spring constant, the minimum thrust level remains
unchanged, whereas the maximum thrust value depends on the
selected spring constant.
Similar explicit boundary values are also established for an oblate

system. The condition for σ < 0 on the nutation frequency defines
now the maximum value of the thrust level. However, the condition
that the thrust must be positive eliminates a part of the open triangular
stable domain.
These results highlight the severe impact of the axial thrust on the

stability conditions in comparison with a free spinner. The physical
values of the particle mass, spring constant, and damping coefficient
that guarantee asymptotic stability can readily be identified for a
given situation. The paper illustrates this for an example based on the
Ulysses parameters with a fixed thrust level and a range of particle
mass values.
Parametric analyses of the roots show that there always exists one

root (i.e., jωj ≈ 2Ωspin) that has always a negative σ value. The
characteristics of the stability region can be adequately described and
interpreted in terms of the behavior of the other two roots. These
results are relevant for designing an optimal nutation damper. Lang
and Halsmer [7] select the particle location such that the two σ values
are equal. However, it is not assured that both frequencies have the
same effects on the attitude. One of the stability boundaries is most
efficient for the (perturbed) nutation frequency, whereas the other is
better for the lower frequency (perturbed from zero) that may have
more influence on the depointing, which is a consequence of the
instability. The relative importance and amplitude of the frequencies
must be assessed before the optimal value for the spring constant can
be decided upon. In any case, the application of such a nutation
damper is only feasible when there is sufficient time for reducing the
nutation.
Finally, the paper offers a new derivation of the first integral

discovered by Mingori and Yam [2] for the system without damping
and discusses its properties as a Lyapunov function.

II. Model and Nomenclature

A. Physical Model

Figure 1 shows the physical model to be used here, which is
consistent with previous papers [1–3]. It consists of a symmetric rigid
body of constant massM and principal moments of inertia C (axial)
and Ab (transverse). The body has a constant spin rate Ω and is
subjected to a thrust F which is assumed to be pointing perfectly

along the spin axis. The xb and yb axes pass through the body’s mass
center (i.e., c:m:b). Furthermore, the xs and ys axes pass through the
nominal system mass center c:m:b when the particle is located in its
rest position on the z axis.
Table 1 summarizes the set of independent parameters that appear

in the present model. The particle of massm is nominally located on
the spin axis at the distance l from the body’s center of mass. For
l > 0, the particle is on the�z axis and for l < 0 it is on the −z axis.
The particle may move in an equatorial plane while attached to the
spin axis by a linear spring of stiffness k and viscous damping
coefficient c. The point of application of the thrust is also taken at l.
The next three rows in Table 1 define the scaling factors for the

spring constant (∼Ω2), the damping coefficient (∼Ω), and the thrust
force (∼Ω2). These positive scaling factors are defined such that they
are independent of any of the parameters of the nutation damper by
which the satellite is augmented. For consistency, the particle m
should be scaled byM but most expressions are simplified whenm is
scaled bym�M. The parameter δ in the final row is the squared ratio
of the particle’s vertical position l and the radius of gyration rg of the
transverse body inertia. A rough approximation of this ratio may be
obtained when replacing rg by the body radius r (note that rg < r).

B. Derived and Auxiliary Parameters

Table 2 summarizes the derived and auxiliary parameters, which
facilitate the translation of the stability results into the relevant
physical parameters of the system. Therefore, the physical interpre-
tations of the first nine rows of Table 2 are provided below. All
normalization constants are defined as positive.
The first three rows define the systemparameters. The totalmass of

the system isM�m and the associated mass ratios are μ and μ1. The
presence of the particle mass m changes the principal transverse
inertia Ab to As and the lever arm to the system c:m:s from l to h. For
stability investigations, it turns out that l < 0 is the interesting case
[1]. The spin inertiaC remains unchanged when the particle is on the
spin axis and changes only in second order of its distance from the
spin axis.
The next row in Table 2 defines the nondimensional independent

variable τ. This is followed by the definitions of λb, λs, and Δ, all of
which involve the ratio of the body and the system moments of
inertia. Although the numerical differences between �λb; λs�,
�Ab; As�, and �h; l� are small for the present application to a nutation
damper (as well as for the slag mass interpretation), it is essential
for the proper understanding of the dynamics to make these clear
distinctions.
The following three rows define the normalized nondimensional

parameters associated with the spring constant k, the damping c, and
the thrust F. Next is the resonance frequency ω2

res of the mass-spring
system, normalized by the square of the spin rate. In the dynamic
equations, we often encounter the combination ω2

res∕μ1. This
expresses the fact that the spring does not act betweenm and a fixed
point but between m and the moving mass M. The resonanceFig. 1 Model configuration and mass properties.

Table 1 Summary of independent physical and scaling parameters

Parameter Unit Description

M kg Body mass
C kg · m2 Axial moment of inertia (spin inertia)
Ab kg · m2 Transverse moment of inertia

for axes passing through the body’s c:m:b
F N Thrust level of rocket motor
Ω 1∕s Spin rate
l m Vertical coordinate of particle relative

to body c.m.
m kg Particle mass
k kg∕s2 Spring constant or stiffness
c kg∕s Viscous damping constant
pk � AbΩ2∕l2 > 0 kg∕s2 Scaling parameter for spring constant
pc � MΩ > 0 kg∕s Scaling parameter for damping constant
pth � AbΩ2∕jlj > 0 N Scaling parameter for thrust force
δ � Ml2∕Ab �
�l∕rg�2 ≥ 0

— — Auxiliary parameter; rg �
�Ab∕M�1∕2 is radius of gyration
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frequency for such a system depends on an equivalent mass meq �
mM∕�m�M� which leads to the expression ω2

res∕μ1.
The last two rows in Table 2 give the definitions of β2, T0, which

are the nondimensional parameters used in the stability diagram (see
also [1]). After multiplication by λ2b, they become fγ2; T0λg.

III. Transverse Dynamics Including Damping

A. Equations of Motion

The derivation of the equations of motion for the dynamic satellite
model in Fig. 1 resembles closely Eqs. (1–5) of [1]. The linearized
equations of the transverse dynamics about the reference motion are
described by the first-order variables fω1;ω2; x1; x2g. The rates ω1,
ω2 are the transverse angular velocity components, normalized by the
spin rate Ω, in a body-fixed reference frame. The variables x1, x2 are
the components of the particle’s displacement with respect to the spin
axis. When including the additional damping terms (see also Eqs. 1–
10 of Yam et al. [4]), the resulting equations of motion for the system
are

Asω
0
1 � �C − As�ω2 � mhfx 0 02 � 2x 01 − x2g − �μF∕Ω2�x2 (1a)

Asω
0
2 − �C − As�ω1 � mhf−x 0 01 � 2x 02 � x1g � �μF∕Ω2�x1 (1b)

x 0 01 −2x 02− �1−ω2
res∕μ1�x1��cn∕μ�x 01�−h�ω 02�ω1�∕μ1 (1c)

x 0 02 � 2x 01 − �1 − ω2
res∕μ1�x2 � �cn∕μ�x 02 � h�ω 01 − ω2�∕μ1 (1d)

The final two equations contain theviscous damping terms,which are
expressed in terms of the nondimensional parameter cn defined in
Table 2.
By applying similar transformations and substitutions as were

used in Eqs. (1–5) of [1], the following set of equations can be
established for the body motion:

ω 01 � �λb − 1�ω2 � �T0λx2 � cnδx 02�∕l � 0 (2a)

ω 02 − �λb − 1�ω1 − �T0λx1 � cnδx 01�∕l � 0 (2b)

x 0 01 − 2x 02 � �T0λ � γ2 − 1�x1 � �cnΔ∕μ�x 01 � lλbω1 � 0 (2c)

x 0 02 � 2x 01 � �T0λ � γ2 − 1�x2 � �cnΔ∕μ�x 02 � lλbω2 � 0 (2d)

where (see Tables 1 and 2)

cn �
c

MΩ
(3a)

δ � Ml
2

Ab
(3b)

Δ � 1� μδ (3c)

The sixth-order system in Eqs. (2) is suitable for stability analyses
even though it contains no information on the body’s attitude motion.
The attitude orientation may be included by introducing two
additional equations for the small attitude angles fθ1; θ2g in terms of
the rates ωi�i � 1; 2�.
After introducing the complex variables ωc � ω1 � jω2 and

xc � x1 � jx2, we can write Eqs. (2) as

ω 0c − j�λb − 1�ωc − j�T0λxc � cnδx 0c�∕l � 0 (4a)

x 0 0c � �cnΔ∕μ� 2j�x 0c � �T0λ � γ2 − 1�xc � lλbωc � 0 (4b)

An important advantage of employing a formulation in terms of
complex variables is because the corresponding characteristic
equation has order three instead of six because each of its solutions
has multiplicity two in the original system of Eqs. (2).

B. Characteristic Equation

To investigate the stability of the linear system in Eqs. (4), we use
the “ansatz” exp�pτ� for the solutions ωc�τ� and xc�τ� of Eqs. (4).
This leads to the dynamic stiffness matrix Z�p�, whose determinant
equals the characteristic equation D�p� of the system in Eqs. (4):

D�p� �Det�Z�p��

�Det

�
p− j�λb − 1� −j�T0λ� cnδp�∕l

lλb p2��cnΔ∕μ� 2j�p�T0λ� γ2 − 1

�
� 0

(5)

The function D�p� is a third-degree polynomial of the variable
p � σ � jω and can be expressed as

D�p� � p3 � a2p2 � a1p� a0 � 0 (6)

Next, the coefficients in Eq. (6) are split up explicitly in their real and
imaginary parts:

a2 � a2r � ja2i (7a)

Table 2 Summary of auxiliary parameters

Parameter Unit Definition Description

μ, μ1 — — m∕�M�m�,M∕�M�m� Ratio relationships between particle mass and total mass
h m μ1l Vertical distance of particle to system c:m:s
As kg · m2 Ab � μ1ml

2 � Ab �mhl Transverse moment of inertia relative to system c:m:s
τ — — Ωt Angular independent variable
0 ≤ λb ≤ 2 — — C∕Ab Precession rate of angular velocity, normalized by the spin rate Ω

(note, the nutation frequency is λb − 1)
0 ≤ λs ≤ 2 — — C∕As As in the preceding row, but in terms of the system moments of inertia
Δ � 1� μδ — — As∕Ab � λb∕λs Ratio of principal system and body transverse inertias
kn ≥ 0 — — k∕pk Normalized spring constant or stiffness
cn ≥ 0 — — c∕pc Normalized viscous damping coefficient
fn — — F∕pth Normalized thrust force of rocket motor
ω2
res — — k∕�mΩ2� Resonance frequency of mass-spring system attached to a fixed

point, normalized by the spin rate
γ2, β2 — — γ2 � ω2

res∕μ1, β2 � γ2∕λ2b ⇒γ2 � kn∕�μδ�
T0λ, T0 — — T0λ � kn − μfn, T0 � T0λ∕λ2b ⇒AbΩ2T0λ � l2k�mlg with g � F∕�m�M�
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with a2r � cnΔ∕μ (7b)

a2i � 3 − λb (7c)

a1 � a1r � ja1i (8a)

with a1r � T0λ � γ2 � 2λb − 3 (8b)

a1i � cn�Δ − λb�∕μ (8c)

a0 � 0� ja0i (9a)

with a0i � T0λ − �λb − 1��γ2 − 1� (9b)

The condition for the existence of constant (i.e., zero frequency
p � 0) solutions of the system in Eqs. (4) is satisfied if the coefficient
a0i in Eq. (9b) vanishes. This condition is identical to Eq. (19b) of [1],
which confirms that the condition for constant solutions does not
depend on the damping coefficient and remains valid in the presence
of damping (i.e., when cn ≠ 0).
In the absence of damping, the parameter cn vanishes and the

coefficient a2 (in addition to a0) is purely imaginary, whereas a1 is
purely real. After changing the variable p into p1 � jp � −ω� jσ,
all coefficients aj�j � 0; 1; 2� of D�p1� in Eq. (6) become real and
the associated solutions are oscillatory stable. Thus, the stability
condition is satisfied if all roots ofD�p1� � 0 are real. This result is
already known from Eq. (26) and the following text in [1].
The expressions in Eqs. (6–9) show that, in general, the

coefficients aj�j � 0; 1; 2� of the polynomial D�p� in Eq. (6) are
complex. The Routh–Hurwitz theorem holds only for equations with
real coefficients and can thus not be used for the present third-order
formulation. (For a sixth-order system, the application of the Routh–
Hurwitz theorem becomes too complicated [3].) Gantmacher [6]
presents a generalization of the Routh–Hurwitz theorem for a system
with complex coefficients but, unfortunately, not all conditions of his
theorem are satisfied in the present case. Therefore, a different novel
approach is proposed here. The properties of the roots of the
characteristic equationD�p� are evaluated by studying an equivalent
system of equations with real coefficients in the real variables σ
and ω.
The complex characteristic equationD�p� � 0 in Eq. (6) is split up

(by writing p � σ � jω) into two polynomial equations for its real
and imaginary parts, which contain only real variables:

RefD�p�g � σ3 � a2rσ2 � b1rσ � b0r � 0 (10a)

ImfD�p�g � b2iσ2 � b1iσ � b0i � 0 (10b)

with

b1r � T0λ � γ2 � �1� ω�f2λb − 3�1� ω�g (11a)

b0r � −cnωΔ�1� ω − λs�∕μ (11b)

b2i � 3�1� ω� − λb (12a)

b1i � cnΔ�1� 2ω − λs�∕μ (12b)

b0i � �1� ω�T0λ � �1� ω − λb�fγ2 − �1� ω�2g (12c)

It may be noted that Δ � λb∕λs (with λb > λs) clarifies the physical
interpretation of the parameter Δ, which has also been used by Yam
et al. [4].

IV. Stability Investigations

A. Stability in Absence of Damping

In the absence of damping, the parameter cn � 0 so that the
coefficientsa2r, b0r, and b1i vanish according to Eqs. (7b), (11b), and
(12b). Therefore, Eq. (10a) is reduced to

RefD�p�g � �σ2 � b1r�σ � 0 (13a)

⇒ σ � 0 (13b)

or σ2 � −b1r (13c)

1. Case σ � 0

These are the solutions with oscillatory stability. Because of the
condition in Eq. (10b), they can only exist if also

ImfD�p�g � b2iσ2 � b0i � 0 (14a)

⇒b0i � ω1T0λ − �λb − ω1��γ2 − ω2
1� � 0 (14b)

where ω1 � 1� ω. For vanishing ω, Eq. (14b) reproduces the
relationship T0λ�γ2� for the constant solutions, see Eq. (19b) of [1].
The condition for oscillatory stability requires that all three roots

ωj (j � 1; 2; 3) of the third-order polynomial in Eq. (14b) must be
real. This is due to the fact that complex roots occur always in
conjugate pairs and their imaginary parts are in fact σ values in the
original variable p. The one root of the pair that has the positive
imaginary part leads to an instability. The equation that expresses this
condition produces the stability curve (in the absence of damping)
that was established in Eqs. (27) of [1].

2. Case σ2 � −b1r
Under this condition, the two roots are

σ2;3 � �
����������
−b1r

p
(15)

As long as b1r < 0 is satisfied, both solutions σ2;3 are real. Obviously,
the positive root σ2 leads to instability in this case.

B. Stability in Presence of Damping

In the general case, damping is present and the parameter cn ≠ 0.
Equation (6) shows that constant solutions p � 0 (i.e., σ � ω � 0)
exist in the particular case when a0 vanishes. Equation (9b) indicates
that a0 contains only an imaginary part so that

a0i � T0λ − �λb − 1��γ2 − 1� � 0 (16)

This is the condition for the existence of constant solutions that was
established and interpreted in Eq. (19b) of [1]. It is important to
recognize that Eq. (16) provides only a sufficient condition for σ � 0.
The necessary and sufficient conditions are given by Eqs. (11b) and
(12c):

b0r � b0i � 0 (17)

The first part of Eq. (17) leads to the following conditions [see
Eq. (11b)]:

b0r � −cnωΔ�1� ω − λs�∕μ � 0 (18a)
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⇒ω � 0 (18b)

or ω � λs − 1 (18c)

where λs � λb∕Δ and λs < 1 is a prolate system. The fact that σ � 0
can only be achieved when ω takes one of the two values specified in
Eqs. (18b) and (18c) is a remarkable result. It offers the possibility to
analyze the sign of σ (which defines the stability) in the neighborhood
of the ω values in Eqs. (18b) and (18c) and σ � 0 by using a
straightforward linearization procedure. The first-order deviations
from the reference values σ � 0 and ω � 0 (or ω � λs − 1,
respectively) are denoted by δσ and δω.
The linear equations in δσ and δω can readily be derived from

Eqs. (10a) and (10b). Because the reference value of σ vanishes, only
the constant and linear terms in σ need to be considered. The four
coefficients bjk�j � 0; 1; k � r; i� contain the variable ω, which
must now be replaced byωref � δω (whereωref stands for either zero
or λs − 1). The coefficients of δσ inEqs. (10a) and (10b) areb1k�ωref�,
k � r; i, respectively. The coefficients of δω in Eqs. (10a) and (10b)
and any constant terms follow after expanding b0k�ωref � δω�,
k � r; i, for small δω.

1. Case 1: ω � 0

First, we note that, by substituting ω � 0 in the second condition
of Eqs. (17), we find from Eq. (14b)

b0i�ω1 � 1� � 0 (19a)

⇒ L1 � T0λ − �λb − 1��γ2 − 1� � 0 (19b)

This recovers the condition for the existence of constant solutions
in Eq. (16).
The linearization procedure outlined earlier yields the following

linear system of equations:

Bδσ − Aδω � 0 (20a)

Aδσ � Bδω � −L1 (20b)

where the constant parameters A and B are defined by

A � cn�Δ − λb�∕μ (21a)

B � T0λ � γ2 � 2λb − 3 (21b)

The solutions δσ and δω of Eqs. (20) are

δσ � −AL1∕�A2 � B2� (22a)

δω � −BL1∕�A2 � B2� (22b)

and the signs of these solutions are given by

signfδσg � −signfAL1g (23a)

signfδωg � −signfBL1g (23b)

There are two cases that need to be considered depending on the sign
of A:

a� A > 0 ⇒ Δ > λb ⇒ λs � λb∕Δ < 1 �prolate system� (24a)

b� A < 0 ⇒ Δ < λb ⇒ λs � λb∕Δ > 1 �oblate system� (24b)

In case a, we see that the sign of δσ is opposite to the sign of L1.
Therefore, δσ is negative (which implies stability) for points above
the line L1. In case b, we find that the half-plane of negative σ values
lies below the line L1. Thus, the line L1 is part of the stability
boundary.

2. Case 2: ω � λs − 1

This is the secondω value that satisfies the necessary and sufficient
conditions in Eqs. (17).When inserting this value into the second part
of Eqs. (17), we find

b0i�ω1 � λs� � 0 (25a)

⇒ L2 � T0λ − �Δ − 1��γ2 − λ2s� � 0 (25b)

An interesting alternative form of Eq. (25b) is found bymultiplying it
by �1∕λs�2 � �Δ∕λb�2:

L2

λ2s
� T0λΔ2

λ2b
− �Δ − 1�

�
γ2Δ2

λ2b
− 1

�

� −β2Δ3 � �T0 � β2�Δ2 � Δ − 1 � 0 (26)

When substituting λb for Δ in Eq. (26), we find that the result
becomes identical to Eq. (C.3) of [1]. This indicates that the envelope
of L2 over the range of parameters Δ is the undamped stability curve
in precisely the same manner as is the case for L1 with respect to the
parameter λb. Therefore, we can conclude that the line L2 will never
enter the unstable zone of the undamped case. This property is
important for the following parametric discussion.
The application of the same linearization procedure to the refer-

ence value ω � λs − 1 leads to the linear system

B 0δσ � Aδω � 0 (27a)

−Aδσ � B 0δω � −λsL2 (27b)

where the abbreviation B 0 is defined by

B 0 � T0λ � γ2 � λs�2λb − 3λs� (28)

The resulting system in Eqs. (27) has the same structure as Eqs. (20)
when replacing A by −A;B by B 0, and L1 by λsL2. Therefore, the
solutions are identical in structure to those in Eqs. (22):

δσ � λsL2A∕�A2 � B 02� (29a)

δω � −λsL2B
0∕�A2 � B 02� (29b)

In this second case, the conclusions are opposite to those of the case
ω � 0. In the caseA > 0, the sign of δσ equals the sign ofAL2 so that
σ is negative (implying stability) for points below the line L2. This
means that the prolate system has its stable half-plane below the line
L2. On the other hand, the oblate systemhas its stable half-plane (with
negative σ values) above the line L2.

C. Summary of Stability Regions

In summary, the lines L1 and L2 together define the stability
boundaries for the system including damping. When plotting these
lines in the fγ2; T0λg plane, we can identify the region that corre-
sponds to σ < 0 for both linesL1 andL2. This is illustrated in Figs. 2a
and 2b for a prolate and an oblate system, respectively. The open
colored triangular regions indicate where the system is asymp-
totically stable (i.e., when satisfying σ < 0). For the prolate system in
Fig. 2a, the body is a fortiori prolate, whereas the body may still be
slightly prolate for the oblate system in Fig. 2b. Asmentioned earlier,
both lines L1 and L2 are tangent to the undamped stability curve for
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the prolate and oblate configurations. The coefficients of L1 depend
only on λb, whereas those of L2 depend also on the particle mass m.
Table 3 summarizes the relevant physical and derived auxiliary

input parameters that have been used in Figs. 2a and 2b, respectively.
The definitions of these parameters and their units are listed in
Tables 1 and 2. In all cases, the spin rate is taken asΩ � 72 rpm and
the particle’s vertical coordinate is l � −1.5 m.
The point C in Figs. 2a and 2b defines the crossing of the lines L1

and L2. It represents the vertex of the asymptotic stability region and
has the coordinates

γ2c � γ2�C� � �1 − λb � λs�∕Δ (30a)

T0λc�T0λ�C�� �1−λb��1�λs��1−λs∕λb�� μδ�γ2c−λ2s� (30b)

For an arbitrary value γ2a to the right of point C, we find that the lower
and upper bounds of T0λ within the triangular stability region corre-
spond to the crossing points of γ2 � γ2a with the lines L1 and L2 (see
pointsTl andTu in Fig. 2a). This result will be used in the next section.
In the special case λb � Δ we find λs � 1 and C � As, which

implies that all three system inertias are equal. In this case, the lines
L1 and L2 coincide and the stability region disappears altogether.
This confirms that asymptotic stabilization is not possible for a
spherical system.
It is surprising that the damping is capable of producing asymptotic

stability in the presence of a thrust force for oblate as well as prolate
configurations. In the case of a rigid spinner without thrust, the
damping is always destabilizing for a prolate system and always
stabilizing for an oblate system.
Finally, we mention that the results shown in Fig. 2 are in full

agreement with those given by Halsmer and Mingori [3], where the
lines L1 and L2 correspond to T0�qΛ� and T0�qΔ�, respectively.

V. Interpretation of Stability Results

A. Parametric Interpretations

Because the damping coefficient c does not affect the stability
boundaries, the system stability is governed by the remaining eight
independent parameters in Table 1. To understand the influence of the
mass-spring characteristics fm; kg, the stability results established
earlier will now be interpreted in terms of the parametric representa-
tions of the physical inputs μ and k within the �γ2; T0λ� plane as pro-
posed in Eqs. (33) in [1]. In the present notations, these equations are

T0λ�γ2; μ� � μ�δγ2 − fn� (31a)

T0λ�γ2; kn� � knf1 − fn∕�δγ2�g (31b)

When comparing the linear relationship of T0λ as function of γ
2 in

Eq. (31a) with the definition of the line L2 in Eq. (25b), we find that
they have equal slopes (because Δ − 1 � μδ). Thus, when consider-
ing a given particle mass m, the systems with the corresponding μ
�m;M� value correspond to a set of parallel lines within the fγ2; T0λg
plane. The intercept on the T0λ axis equals−μfn. The definition of fn
in Table 2 indicates that fn > 0 and increases with the thrust level F
and lever arm jlj. On the other hand, fn decreases with the transverse
inertia Ab and the square of the spin rate Ω.

B. Prolate Configuration

Figure 3 illustrates the results for a prolate configuration based on
the inputs in Table 3. The dotted lines are parallel to line L2 and
represent the constant mass ratio associated with m � 18 kg. The
upper line represents the no-thrust case fn � 0 and the subsequent
lower parallel lines refer to increasing thrust levels up to 100% of the
Ulysses injection thrust (i.e., fn � 3.3744).

Fig. 2 Illustration of asymptotic stability regions for prolate and oblate
systems.

Table 3 Physical and auxiliary input parameters

Physical parameters Values Auxiliary parameters Values

Prolate case, Fig. 2a

M 586.56 μ 0.029774
m 18 λb 0.67085
C 377.69 δ 2.3442
Ab 563.0 Δ 1.0698
F 72000 fn 3.3744

Oblate case, Fig. 2b

M 325.87 μ 0.029774
m 10 λb 1.5
C 500 δ 2.1999
Ab 333.33 Δ 1.0655
F 72000 fn 5.6993

Fig. 3 Stability of prolate system (λs < 1) for different thrust levels.
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The thrust level that coincides with the blue line L2 can be
calculated from the equality of Eqs. (25b) and (31a) at the point C
(γ2 � γ2c) and its value is fnc � δλ2s (which is 27.3%of themaximum
thrust in Fig. 3). Thus, the point C with coordinates �γ2c; T0λc� is
associated with this specific thrust level fnc.
Equations (30a) and (30b) show that both γ2c and T0λc are positive

for the prolate case. The parameter δ depends only on the body data
M, Ab, and lever arm l. In practice, we always have λb > λs, μδ is
small, and Δ is slightly above one. Therefore, γ2c � ω2

res∕μ1 in
Eq. (30a) is slightly below one so that the spring’s resonance fre-
quency is below (but close to) the spin rate. These considerationsmay
be summarized as follows (with somemargin): So that the system lies
within the stable region, it is necessary that the resonance frequency
of the spring-mass system is above the spin rate.
When a set of system parameters is given, the actual minimum

required value of the spring constant kc can readily be calculated from

kc � meqΩ2γ2c (32a)

with γ2c � �1 − λb � λs�∕Δ (32b)

where meq � mμ1 � Mμ (see explanation in Sec. II.B).
For any arbitrary γ2 value to the right of point C, the stability

interval for T0λ satisfies the conditions

�λb − 1��γ2 − 1� < T0λ < �Δ − 1��γ2 − λ2s� (33)

The lower bound becomes negative when γ2 > 1 (see also Fig. 3).
The range of thrust values fn for which T0λ remains within the

stable region follows from Eq. (33) by substituting the definition of
T0λ in Table 2:

�λb − 1��γ2 − 1� < kn − μfn < �Δ − 1��γ2 − λ2s� (34)

After eliminating kn with the help of the identity kn � μδγ2 (see
Table 2), we obtain:

δλ2s < fn < f�Δ − λb�γ2 − �1 − λb�g∕μ (35)

Thus, the minimum thrust value fnm for asymptotic stability is
independent of the spring constant and is given by

fnm � fnc � δλ2s (36)

This minimum value is valid on the line L2 in Fig. 3 and is the only
thrust level for γ2 � γ2c. For the inputs considered here (see Table 3),
we find the result fnm � 0.9218, which corresponds to the physical
force Fm � AbΩ2fnm∕jlj � 19; 669 N. This result amounts to
27.3% of the Ulysses injection thrust of 72,000 N. For increasing
values of γ2, a range of thrust levels opens up within the stability
region in Fig. 3.
The maximum allowable thrust value is a priori given by the right-

hand side of the inequality in Eq. (35) and depends, of course, on the
spring constant (via γ2). For illustration, we consider the value γ2 �
1, which is slightly larger than γ2c. For this value, we find fnM �
δ � 2.3442 or FM � 50; 018 N, which is 69.5% of the Ulysses
injection thrust (see also Fig. 3). Vice versa, a given thrust level
requires a minimum value of the spring constant. For instance, when
considering the actual Ulysses thrust level of fn � 3.3744, the
minimum required value for γ2 can be calculated from Eq. (35):

γ2min �
1 − λb � μfn
1 − λb � μδ

(37)

which gives γ2min � 1.0769 (i.e., point D in Fig. 3). This result
confirms that the normalized resonance frequency ωres � 1.0222 is
just above one.
Next, we focus on the characteristics of the roots. Numerical

calculations indicate that root 1 has jωj ≈ 2 with a real part that is

always negative. Roots 2 and 3 have imaginary parts, which are the
continuations of the nutation frequency and zero frequency, respec-
tively. Their real parts are fairly small andmaybe positive or negative.
Figure 4a shows the real parts of roots 2 and 3 as functions of the

thrust level fn while traversing the stable region in Fig. 3 along the
vertical line γ2 � 1.237. Figure 4b shows the corresponding complex
roots. The σ’s of roots 2 and 3 are negative only inside the stable
region. The σ value of root 2 goes from positive to negative when
entering the stable region from above (i.e., the line L2 in Fig. 3 and the
curves associated with root # 2 in Figs. 4a and 4b). The real part of
root 3 is already negativewhen entering the stable region from above.
Subsequently, it moves "along the curves associated with root # 3 in
the direction of the arrows in Figs. 4a and 4b. Finally, it crosses the
stability boundary σ � 0 at fn � 5.520 in Fig. 4a, while crossing line
L1 in Fig. 3 from above (on the vertical line γ2 � 1.237).
The negative real parts of roots 2 and 3 become equal when

fn � 4.189 in Figs. 4a and 4b (i.e. at the value σeq � −0.001312).
Because jσj is the inverse of the time constant of an exponential
decay, it will take 3∕jσeqj spin periods to reduce a nutation distur-
bance to 5% of its initial value during thrusting. This number of spin
periods contains more nutation periods than the periods of the low
frequency (i.e., root 3). A priori, the point where these two negative σ
values become equal may be interpreted as having “maximum”

stability. However, the impacts of the two roots on the nutation
damping may be very different and should be taken into account.
The damping coefficient cn � 10−3 gives 3∕jσeqj � 2286 spin

periods or 38 min at 60 rpm. The larger damping cn � 10−2 leads to
fn � 4.174, σeq � −0.01278, and only 3.9 min at 60 rpm.

C. Oblate Configuration

The stability region of the oblate configuration is shown in Fig. 5
with inputs specified in Table 3, which were also used in Fig. 2b. The
slope of line L1 is now positive and corresponds to the upper

Fig. 4 Prolate system (inputs in Table 3; cn � 10−3): a) real parts of
roots vs thrust; b) complex roots.
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boundary of the stability zone. It is clear from Eqs. (30a) and (30b)
and fromFigs. 2b and 5 that γ2c < 1 andT0λc < 0 for the oblate system.
The two inequalities in Eq. (35) swap sides because L1 is now the

upper stability boundary of T0λ and L2 is the lower boundary.
Therefore, the limit δλ2s , which is independent of the spring constant,
is the maximum allowed thrust value for stability in this case. This
limit corresponds to the 76.5% thrust line in Fig. 5. The minimum
physically possible value of the thrust level is zero. This constraint
changes the open triangle to a zone bounded by two parallel lines and
a segment of the line L1. The lower limit γ2min for the spring constant
that stabilizes the system for zero thrust and for the given particle
mass follows from Eq. (35):

γ2min �
1 − λb

1 − λb � μδ
(38)

This coordinate corresponds to point E (with γ2E � 1.1507) in Fig. 5
and makes the shape of the stability region become trapezoidal.
Figure 6a shows the real parts of the roots 2 and 3 as functions of

the thrust fn for an oblate bodywith inertia ratio λb � 1.5. The inputs
are given in Table 3 and are the same as used in Fig. 5. The results
indicate that the stable range (i.e., σ < 0) stretches up to fn � 4.360
(i.e., 76.5% of the maximum thrust in the oblate case) where the real
part of root 3 vanishes. In the absence of thrust, the system is stable
because both σ values are negative in Fig. 6a.
Figures 6a and 6b show that the damping of root 2 (which is now

the continuation of the constant solution) increases for larger thrust
levels. Root 3 (i.e., the continuation of the nutation frequency)
provides strong damping in the absence of thrust but the damping
diminishes as the thrust increases and eventually leads to instability
when fn > 4.360. Also, in the oblate case, the root 1 (not shown)
with jωj ≈ 2 always has a negative real part.

D. Application to Ulysses with Low Particle Mass Ratio

In the previous sections, the thrust was considered a variable
parameter, whereas the stability zone was traversed along a vertical
line of constant γ2 value. Here, we consider the case in which the
prolate Ulysses configuration in Figs. 2a and 3 will be stabilized by a
particle with mass ratio μ of, at most, 1% (i.e.,m < 5.925 kg) for the
full-thrust case. Apart from m and μ, the other inputs specified in
Table 3 remain valid here.
Figure 7 shows the two stability boundary lines L1 and L2 as well

as the pointD, which is the vertex of the stability region. The point B
corresponds to the location at which T0λ vanishes. Equation (31a)
gives γ2B � fn∕δ � F∕�MΩ2jlj�. Consequently, the lines of constant
positive μvalues haveT0λ < 0 for γ2 < γ2B andT0λ > 0 for γ2 > γ2B. At
the 100%Ulysses thrust level, we have γ2B � 1.435 > 1 and the parts
of the stability region where T0λ is positive (negative) to the left
(right) of γ2B are eliminated for positive μ values. The full-thrust
μ � 1% line enters the stability triangle at pointD and stabilization is
possible for γ2 > γ2D � 1.029. The coordinate γ2D corresponds to
kn � 0.02413 or k � Ab�Ω2∕l2�kn � 343.2 N∕m.

The two small colored triangles in Fig. 7 are the remainders of the
original open triangular region (shown in Fig. 3), where asymptotic
stability is possible for mass ratios μ below 1% under the assumed
inputs for this case.
Figure 8 shows the real parts of the roots 2 and 3 as a function of γ2.

The line associated with root 2, which is the continuation of the zero
solution. It becomes negative when γ2 exceeds 1.029 and decreases
gradually for increasing γ2. The damping for root 3 (i.e., the perturbed
nutation frequency) is also shown in Fig. 8. The value of
σ is already negative when entering the stability region but keeps
increasing monotonically for larger stiffness values. The damping
produced by the frequency of root 1 is systematically an order of
magnitude larger (not shown).

Fig. 5 Stability of oblate system (λs > 1) for different thrust levels.

Fig. 6 Oblate system (inputs in Table 3; cn � 10−3): a) real parts of
roots vs thrust; b) complex roots.

Fig. 7 Stabilization of prolate Ulysses system for μ ≤ 0.01.
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VI. Conclusions

The effectiveness of a damped mass-spring system on a spinning
satellite under axial thrust is investigated in detail by using
Lyapunov’s first method. It is found that the transition from asymp-
totically stable to unstable can occur for only twovalues of the system
frequency. This allows calculating the asymptotic stability bound-
aries by a standard linearization procedure of a system of two
equations with real coefficients, which is equivalent to the system’s
characteristic equation. Analyses and simulations confirm that both
prolate and oblate spinners can be stabilized by such a system. Valu-
able new visualizations and interpretations are established in terms of
the adaptation of the familiar maximum-axis rule to a spinner under
axial thrust. First of all, an oblate spinner under axial thrust may be
destabilized by the damping system considered here. A new result is
that this happens in any case if the thrust exceeds a certain threshold
level. In the case of a prolate spinner, for which damping is always
destabilizing in the absence of thrust, ranges for thevalues of themass
and spring constant exist where the system can be stabilized under
axial thrust. A numerical example based on the Ulysses injection
parameters indicates that it is not obvious that a nutation damper
consisting of such a damped mass-spring system would be suitable
for applications in which the damping time is limited. Finally, it may
be of interest to investigate whether similar results for the damping
capabilities under axial thrust also apply to more common nutation
dampers such as fluid-in-ring or fluid-in-tube systems.

Appendix A: First Integral for the Undamped Case

A1 System of Equations

The system of equations in real form is given in Eqs. (2). In the
absence of damping (i.e., when cn � 0) this system can be simplified
as follows:

ω 01 � �λb − 1�ω2 � T0λx2∕l � 0 (A1a)

ω 02 − �λb − 1�ω1 − T0λx1∕l � 0 (A1b)

x 0 01 − 2x 02 � �T0λ � γ2 − 1�x1 � λblω1 � 0 (A1c)

x 0 02 � 2x 01 � �T0λ � γ2 − 1�x2 � λblω2 � 0 (A1d)

We introduce the state vector x � �ω1; x1; v2;ω2; x2; v1�T with v1 �
−x 01 and v2 � x 02. Next, we express Eqs. (A1) in the form x 0 � Ax
with the 6 × 6 matrix A defined by

A �
�
O −A1

A1 O

�
(A2a)

with A1 �
" λb − 1 T0λ∕l 0

0 0 1

lλb T0λ � γ2 − 1 −2

#
(A2b)

The state vector x adopted here is similar to the one used in Eq. (20) of
Halsmer et al. [3] except for the different sign of v1, which is needed
for establishing the structure of the matrix A in Eqs. (A2).

A2 Construction of First Integral

Equations (A1) are convenient for building a first integral. First, we
multiply each of Eqs. (A1a) and (A1b), which are normalized by the
spin rate, with its corresponding ωi�i � 1; 2� and add the results:

1

2

d

dτ
�ω2

1 � ω2
2� �

T0λ

l
�x1ω2 − x2ω1� (A3)

Similarly, after multiplying the equations for xi in Eqs. (A1c) and
(A1d) with its corresponding x 0i (i � 1; 2) and adding the results, we
find:

1

2

d

dτ
f�x 021 � x 022 � � �T0λ � γ2 − 1��x21 � x22�g

� −lλb�x 01ω1 � x 02ω2� (A4)

Next, we multiply each equation for ωi�i � 1; 2� in Eqs. (A1a) and
(A1b) with its corresponding xi (for i � 1; 2) and add the results:

x1ω
0
1 � x2ω 02 � −�λb − 1��x1ω2 − x2ω1� (A5)

Then we eliminate the term (x1ω2 − x2ω1) on the right-hand side of
Eq. (A3) with the help of Eq. (A5) and find:

1

2

d

dτ
�ω2

1 � ω2
2� � −

T0λ

l�λb − 1� �x1ω
0
1 � x2ω 02� (A6)

Finally, we multiply both sides of Eq. (A4) by the constant term
T0λ∕fl2λb�λb − 1�g:

1

2

T0λ

l2λb�λb − 1�
d

dτ
f�x 021 � x 022 � � �T0λ � γ2 − 1��x21 � x22�g

� −
T0λ

l�λb − 1� �x
0
1ω1 � x 02ω2� (A7)

The bracketed terms on the right-hand sides of Eqs. (A6) and (A7)
can be combined into the derivative of (x1ω1 � x2ω2). Furthermore,
the derivative terms on the left-hand sides of Eqs. (A6) and (A7) can
be merged, and so we find, by adding Eqs (A6) and (A7):

1

2

d

dτ

�
ω2
1�ω2

2�
T0λ

l2λb�λb−1� ��x
02
1 �x 022 ���T0λ� γ2−1��x21�x22��

�

�−
T0λ

l�λb−1�
d

dτ
�x1ω1�x2ω2� (A8)

Equation (A8) is equivalent to the total differential dV � 0 with
corresponding first integral V:

V � ω2
1 � ω2

2 �
T0λ

l2λb�λb − 1� fx
02
1 � x 022

� �T0λ � γ2 − 1��x21 � x22�g �
2T0λ

l�λb − 1� �x1ω1 � x2ω2� (A9)

V is a quadratic function of the state vector x (i.e. V � xTBx), with
the matrix B defined by:

Fig. 8 Real parts of roots 2 and 3 for Ulysses system (μ � 0.01;
cn � 10−3).
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B �
�
B1 O
O B1

�
with B1 � 1

l2λb

2
4 l2λb lλbc3 0

lλbc3 c2c3 0

0 0 c3

3
5
(A10)

The matrix B and its elements have the following properties and
definitions:

B � BT (A11a)

B1 � BT1 (A11b)

c2 � T0λ � γ2 − 1 (A11c)

c3 � T0λ∕�λb − 1� (A11d)

If B were a positive-definite matrix, then the first integral V in
Eq. (A9) would be a Lyapunov function. Furthermore, because the
derivative of V along a solution trajectory is zero (i.e., V 0 < 0) by
design, we have a sufficient condition for oscillatory stability. (Note,
onlywhenV 0 < 0 dowe have a necessary and sufficient condition for
asymptotic stability). So that the matrix B1 is positive definite, it is
necessary and sufficient (according to Sylvester’s criterion) that all of
its three leading principal minors are positive. This leads to the
following two nontrivial conditions:

c3
l2

�
c2
λb

− c3
�
> 0 (A12a)

c23
l4λb

�
c2
λb

− c3
�
> 0 (A12b)

The positive l2 and l4 terms may be dropped so that Eqs. (A12a) and
(A12b) yield the following conditions:

a� c2 > λbc3 ⇒ T0λ � γ2 − 1 > λbT0λ∕�λb − 1� (A13a)

b� c3 > 0 ⇒ T0λ∕�λb − 1� > 0 (A13b)

Here, the different signs of λb − 1 need to be distinguished because it
is negative for a prolate body and positive for an oblate body. For the
prolate body (i.e., 0 < λb < 1), Eqs. (A13a) and (A13b) produce

T0λ > �λb − 1��γ2 − 1� (A14a)

and T0λ < 0 (A14b)

The first condition states that the region of oscillatory stability (see
[1]) is above the lineL1, which is consistent with the results shown in
Figs. 2a and 3. The second condition, however, limits the region to
negative values of T0λ so that the remaining area covers only part of
the oscillatory stable region of the fT0λ; γ

2g plane.
It can be confirmed that similar conditions as in Eqs. (A14a) and

(A14b) also hold for an oblate satellite body (i.e., 1 < λb < 2) except
that the two inequality signs will be inverted. The comparison with
the results in Fig. 2b shows that, also for the oblate case, the resulting
region covers only part of the stability region.
These results confirm that the stability results obtained from a

Lyapunov function are sufficient (see Müller [8]) and depend on the
particular Lyapunov function that is being used. Although the first
integral found here is constructed in a similar way as an energy
integral, it is not the total energy of the system.

Appendix B: First Integral with Change of Variables

Now thevariablesωi are replaced bywi � ωil (i � 1; 2) and x 01, x
0
2

are replaced by

vb1 � x2 − w2 − x 01 (B1a)

vb2 � x1 − w1 � x 02 (B1b)

where vbi�i � 1; 2� is the particle’s velocity in the body frame when
the rotation of the bodywith reference pointOb is taken into account.
The new variables wi � ωil (for i � 1; 2) are linear velocities.
Because the independent variable τ is nondimensional, the velocities
Ωxi (i � 1; 2) appear to have the dimension of distance.
In terms of the new variables xn � �w1; x1; νb2; w2; x2; νb1�T the

system of Eqs. (A1) becomes

w 01 � −�λb − 1�w2 − T0λx2 (B2a)

w 02 � �λb − 1�w1 � T0λx1 (B2b)

x 01 � −w2 � x2 − vb1 (B2c)

x 02 � w1 − x1 � vb2 (B2d)

v 0b1 � −vb2 � γ2x1 (B2e)

v 0b2 � vb1 − γ2x2 (B2f)

When writing Eqs. (B2) in matrix form (i.e., x 0n � Anxn), we find
that the matrix structure of An is identical to the one in Eq. (A2a):

An �
�
O −A1n

A1n O

�
(B3a)

with A1n �

2
4 λb − 1 T0λ 0

1 −1 1

0 −γ2 1

3
5 (B3b)

The first integral for the new system in Eqs. (B2) can now easily be
obtained from

w1w
0
1 �w2w

0
2 � −T0λ�x2w1 − x1w2� (B4a)

x1x
0
1 � x 02x 02 � �x2w1 − x1w2� − �x1vb1 − x1vb2� (B4b)

vb1v
0
b1 � vb2v 0b2 � γ2�x1vb1 − x2vb2� (B4c)

When adding the terms of Eqs. (B4) with respective coefficients
f1; T0λ; T0λ∕γ2gweobtain the new total differentialVn. Thus, the first
integral in terms of the new state vector xn is

Vn � w2
1 �w2

2 � T0λ�x21 � x22� �
T0λ

γ2
�v2b1 � v2b2� (B5)

This result is a quadratic form on a diagonal matrix, which is
positive definite when T0λ > 0 (from Sylvester’s criterion). By
construction, we have V 0n � 0. Therefore, in terms of this new state
vector, it is clear that the first integral Vn is indeed a Lyapunov
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function. This also confirms that the system is oscillatory stable
when T0λ > 0.
Again, this sufficient condition does not produce the total

oscillatory stable region for the undamped case (see [1]). In Halsmer
and Mingori [3], a Lyapunov function with V 0 < 0 has been con-
structed for the system including damping. When this Lyapunov
function is positive definite, we have a necessary and sufficient
condition for asymptotic stability and the results are in full agreement
with the Lyapunov direct method used in this paper.
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