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Analytical Models for Relative Motion Under Constant Thrust

J. Van der Ha* and R. Mugellesif
European Space Agency, Darmstadt, Federal Republic of Germany

A general formulation for the relative motion allowing for arbitrary perturbing or thrust forces on each of the
two satellites is presented. Exact as well as approximate perturbation solutions for the linearized relative motion
equations with constant radial or circumferential forces acting on the subsatellite are established. The validity
and usefulness of these solutions is assessed for a few realistic applications related to the European Space
Agency's retrievable carrier (EURECA) rendezvous maneuvering with the Shuttle. The results are of general
interest for the fast calculation of relative subsatellite motion under thrust forces.

I. Introduction

T HE study of orbital relative motion and rendezvous prob-
lems is becoming increasingly important, mainly because

of space station applications. These types of problems have
been studied since about 1960, and relatively simple analytical
expressions for relative motion and rendezvous using impul-
sive maneuvers have been available since that time. In actual
practice, however, maneuvers during rendezvous operations
cannot normally be considered impulsive (because of the low
thrust levels used); therefore, finite-thrust arcs must be stud-
ied. Of course, impulsive maneuvers often serve a very useful
role as starting or reference solutions for more accurate ap-
proaches.

In the present paper, new analytical models for relative mo-
tion under constant circumferential and radial thrust (on the
probe vehicle) are formulated. The rationale of the present
theory is to obtain a better understanding of the nature and the
possibilities of relative motion during constant thrust arcs.
This knowledge would be useful for designing and evaluating
orbit rendezvous strategies.

Many spacecraft are equipped with Earth sensors, which
allow the spacecraft to keep a fixed orientation relative to the
Earth by means of onboard attitude control. The Earth-point-
ing attitude orientation leads naturally to the circumferential
(relative to the spacecraft orbit) thrust direction. This is the
case, for instance, for the European Space Agency's retriev-
able carrier (EURECA), when it is performing rendezvous
maneuvers with the Shuttle during its retrieval phase. An opti-
mal rendezvous strategy under the constraint of a circumferen-
tial thrust direction would consist of a succession of three types
of arcs: positive- and negative-thrust arcs, and coast arcs. The
resulting relative motion during each of these arcs can be de-
scribed by the analytical models presented in the present paper.

Exact solutions will be formulated for the linearized (in
terms of ratio of relative to orbital distances) equations during
circumferential and radial-thrust arcs. In addition, specific
approximate asymptotic solutions are presented for these lin-
earized equations in the case when the thrust/gravity ratio is
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sufficiently small so that the conditions of perturbation theory
apply. The solutions to be presented are valid for close sub-
satellite motion relative to a circular and coplanar station or-
bit.

The solutions obtained would be useful for analysis and
design of relative motion and rendezvous trajectories. Because
of their relative compactness, the analytical results established
here could also be suitable for incorporation in autonomous
terminal maneuver planning software.

II. Equations of Relative Motion
A. General Formulation

The equations of relative motion follow from Newton's sec-
ond law by subtracting the individual equations of motion for
the two satellites in an inertial reference frame:

(1)

The relative position vector p is defined as rp -r as shown in
Fig. 1.

Parameters belonging to the probe (i.e., subsatellite) have a
subscript p, whereas those associated with the station have no
subscript. The ideal central-body gravity forces are incorpo-
rated on the left-hand side of Eq. (1) with ^ denoting the
Earth's gravitational parameter. All other forces (induced by
perturbations or thrust) acting on each of the two satellites are
contained in F and Fp, respectively.

The equations of motion can be expanded in components in
the local *, y, z reference frame, i.e., the osculating frame at-
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Fig. 1 Visualization of orbital geometry.
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tached to the station's orbit, by using Eq. (12) of Ref. 1:

(2)

The terms appearing here are known as relative, Coriolis, cen-
tripetal, and transverse accelerations, respectively. The vector
W designates the instantaneous rate of rotation of the local
frame relative to inertial space. By the nature of the definition
of the osculating plane, the y- component of the rotation vec-
tor fFmust vanish (see for instance Refs. 2 and 3). Therefore,
W can be written as

w=rFz/(mh); = h/r2 (3)

Here, h stands for the orbital angular momentum (per unit
mass). Throughout the paper, the notation x , y , z will be used
for the unit vectors along the local x, y, z axes. Finally, the
following relative equations of motion are obtained from Eqs.
(1-3)

(4a)

(4b)

(4c)

The accelerations appearing on the right-hand sides of Eqs.
(4) actually take account of all external forces acting on both
satellites

-Fx/m -

= Fpy/mp -Fy/m + 2zw

z = Fpz/mp -Fz/m -2yw + -xi>)-yw

(5a)

(5b)

(5c)

It should be noted that Fpx, Fpy9Fpz designate the components
of the probe's perturbing forces expanded along the local axes
belonging to the station. Since these forces will usually be
known relative to a coordinate frame attached to the probe
itself, a transformation using an inertial reference frame as an
intermediary is required.

When denoting the attitude matrices of the station's and
probe's local reference frames (relative to an inertial frame) by
[A] and [Ap], respectively, it can be shown that

(6)

B. Angular Formulation
The equations of relative motion will now be formulated in

terms of the quasi-angle v, defined by its differential equation
v = h/r2 as an independent variable. In this manner, one ar-
rives at an attractive formulation where the differential equa-
tions of motion are expressed in terms of the new independent
variable v. In the absence of perturbations or thrust forces, the
selected independent variable coincides with the well-known
true anomaly. In the presence of such forces, the definition of
v as given in Eqs. (3) is still meaningful (see for instance Ref.
3).

Further significant simplification of the equations of mo-
tion can be achieved by the normalization of the relative posi-
tion coordinates using the station's orbital radius r: t~=x/r,
ri=y/r, $=z/r.

First, the polar form of the station's equations of motion is
recalled:

r - r v = Fx/m , h = rFy/m (7)

These equations are representative of the station's orbital mo-
tion under arbitrary perturbing or thrust forces. They form the
starting point for the derivation of more convenient represen-

tations in terms of orbital elements as shown in Refs. 2 and 3.
The station's motion can in principle be obtained from Eqs. (7)
in isolation of the probe's relative motion to be studied below.
Of course, the characteristics of the station's orbital motion
will appear in the results of the relative motion.

The transformation from t to v as independent variable uses
the following relationships:

A
dt

= -
dt2 ~ V dv

.
dv2

with

v = h\h'/h -2r'

(8)

(9)

where ' stands for d/dv. After a considerable amount of alge-
bra involving Eqs. (4) and (7-9), one can establish the follow-
ing result for the equations of relative motion:

OOb)

with R defined as

The forcing terms are defined as follows:

(11)

(12a)

(12b)

(12c)

The former two of the equations appearing in Eqs. (10) have
been derived previously in Eqs. (20) of Ref. 1 by a different
approach. It may be emphasized that the system of Eqs. (10)
are completely equivalent to the original system of Eqs. (1) as
no approximations whatsoever have been introduced up to this
stage.

C. Linearized Equations
In the case where the relative distance is small compared to

the orbital radii, it may be justified to neglect terms of second-
order smallness in terms of the ratio relative/orbital distance
(i.e., p/r). The function R(v) of Eq. (11) can be expanded as
follows:

(13)

This expansion results in the following system of equations:

r-2i?'-3(Mr///2)£ = ̂  (14a)

ir+l^n, (14b)

r+r=«r (14c)
This is a linear system with (in general) periodic coefficients,
and it has been studied extensively by Tschauner and
Hempel.4'5

A further simplification is introduced by considering an
ideal circular station orbit that can only be approximately true
in actual practice because of perturbing influences. When it is
assumed that r remains constant (equal to r(v) = H2/n), the first
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of Eqs. (14) can be further simplified to become

(15)

This system corresponds to the well known Clohessy-Wiltshire
equations6 and represents a convenient starting point for rela-
tive motion and rendezvous analyses.

In line with the assumption that r is constant, the force com-
ponents Fx and Fy that are acting on the station must vanish.
This implies that the forcing terms can be simplified accord-
ingly [using Eqs. (12) and (5)]

(16a)

(16b)

It may be noted that the out-of-plane force component FZ9
which induces a slow rotation of the station's orbit plane, can
still be included in this model as it does not affect the in-plane
motion [see Eqs. (3) and (7)]. If Fz also vanishes, the rotation
w of the orbit plane disappears so that only the forces acting
on the probe (i.e., Fp) will be remaining in the model, as can
be seen from Eqs. (5).

III. Thrust Forces
Under the conditions stated at the end of the previous sec-

tion, only the forces acting on the probe enter the analysis.
These forces will be assumed constant over the interval under
consideration. This is a realistic assumption for typical thrust
forces acting on the probe vehicle. Equation (6) provides the
transformation of forces from the probe's local reference
frame to the components of Fp expressed in the station's local
frame. In general, this transformation would involve rather
complicated functions of the differences in angular elements
such as Av, A/, A12 between the two orbits. If it is now assumed
that the two orbit planes essentially coincide (e.g., after com-
pletion of an out-of-plane maneuver), this transformation can
be reduced to a simple rotation over A*>.

A. Circumferential Thrust
First, it is assumed that a constant circumferential thrust Tc

is acting on the probe vehicle. In the case where the aforemen-
tioned conditions apply, the thrust components in the station's
local frame can be expressed as (see also Fig. 2)

Fp = Tc [cos Avy — sin Avx ] (17)

Expressing this in terms of the normalized (relative to r) rela-
tive coordinates £, rj, and f, one finds

(18a)

(18b)

Here, O( . . . ) refers to omitted second- and higher-order terms
in the normalized relative distance. In a linear theory, one can
take the approximations sinA*> = 77, and cosA*> = 1 with errors in
the order of the square of the normalized relative distance. It
will be assumed that the thrust force is the only force acting on
the probe. Since the free motion in the z- direction is well
known, only the in-plane motion will be considered here.

Under the assumptions expressed previously, the Clohessy-
Wiltshire equations can be extended to incorporate the circum-
ferential thrust acceleration on the probe [see Eqs. (14) and
(15)]:

(19a)

(19b)

with e = r2Tc/(fjim). It should be emphasized that no expan-
sion in terms of e has taken place in Eqs. (19). Since all vari-
ables appearing in the system of Eqs. (19) have been properly
nondimensionalized, the parameter e is representative of the
effectiveness of the thrust relative to that of the gravity force.

As an example, the acceleration delivered by 70-N thrusters
on the EURECA spacecraft is 0.0206 m/s2, on the basis of a
mass of 3400 kg. This results in a value of e = 0.0024. By taking
e positive, negative, or zero, one can make the system of Eqs.
(19) valid for any of the two possible circumferential thrust
arcs as well as for a coast arc.

B. Radial Thrust
A system of equations similar to Eqs. (19) can be derived in

the case that a constant radial thrust Tr is acting on the probe.
The radial thrust components in the station's local frame may
be expressed as

= Tr y + cosAvx) (20)

Under the same assumptions as in the previous section, it can
be shown that the Clohessy-Wiltshire equations incorporating
radial thrust acceleration on the probe are of the form

(21a)

(21b)

with e = r2Tr/(fjim). By taking e positive, negative, or zero, one
can make this system valid for any of the two possible radial
thrust arcs as well as for a coast arc.

IV. Exact Analytical Solutions
A. Circumferential Thrust

The exact analytical solution for the system of Eqs. (19) can
be obtained in a direct manner. First, a new variable j(v) is
introduced as

(22)
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Fig. 2 Visualization of circumferential thrust.
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which leads to y'(v) = e according to the latter equation of the
system [Eqs. (19)]. Therefore, one finds immediately

(TO = *?o (23)

Differentiating the former equation in Eqs. (19), and substitut-
ing the latter, one finds

(24)

where the term 77' can be readily eliminated with the aid of Eqs.
(22) and (23); therefore Eq. (24) becomes

(25)

This is a decoupled linear equation with the independent vari-
able appearing in the right-hand side. A particular solution %p
that satisfies Eq. (25) exactly can be obtained by inspection:

(26)

The general solution of the homogeneous part is calculated
from the corresponding characteristic polynomial equation

X3+X,-2e = 0 (/ = 1,2,3) (27)

This cubic equation can be solved by means of a standard
technique

Xi = - 2VI73 cot(2a), X2,3 = VI73 cot(2a) ± i csc(2a) (28)

with the auxiliary angle a. is defined as

(29a)

(29b)

a = arctan =F | tan(0/2) | 1

ft = arctan{- (l/3)3/2/e]

+ exp( - \} p/2) \Bl cos(co j>

The sign of a is defined by the sign of e: the upper sign holds
for e>0 and the lower sign for e<0. It is seen that the condi-
tions | /3 1 < 7T/2 and | a | < ir/4 are satisfied so that the resulting
roots in Eqs. (28) are meaningful.

The homogeneous solution is exact as no approximation for
small e has been applied anywhere. Naturally, it should not be
overlooked that the system of Eqs. (19) is an approximation in
the sense that the relative distance is assumed to be small.

The exact solution for rj(v) can be obtained from %(v) by
integration using Eqs. (22) and (23). The complete exact solu-
tions of Eqs. (19) are now obtained in the form:

(30a)

co - B2\i) sin(co*>) +

+ 252co) cos(co*>) exp( - X^/2)l /(co2 + X2/4) (30b)

The frequency to is defined as csc(2a), whereas the integration
constants Ai, B\, B2 are fairly complicated expressions in terms
of the initial conditions and their derivatives:

4) (31a)

(31b)

(31c)

Note that £o = 3£0 + 2r7o —&IO as can be seen from Eqs. (19).

B. Radial Thrust
The exact analytical solutions of the system of Eqs. (21) is

obtained as follows. Differentiating the former equation in
Eqs. (21), and substituting the latter, one finds

(32)

Differentiating again and using the first equation of the system
in Eqs. (21)

(33)

A particular solution of Eq. (33) is simply £p= -e/3. The
general solution of the homogeneous part is calculated from
the corresponding characteristic polynomial equation of
fourth degree

X?+(l-e)X2 + 3e = 0, (/ = !,... ,4)

with the four roots
r ______ '/2

X,,2= ±i [(1 -e) + V(l -e)2- 12eJ /V2

X3,4=

(34)

(35a)

(35b)

For small values of e, it can be shown that X1>2 generates
periodic solutions with frequency close to the orbital fre-
quency, whereas X3>4 leads to long-term periodic solutions with
periods of about 27r/(3e)1/2.

The solution for r)(v) follows from repeated differentiation
of %(v) as can be seen from Eq. (32). The complete exact
solution can finally be written in the form

) = - e/3 + d cos(oj! v) + Si

+ C2

- co2,) j^S2 cos(co2v) - C2 sin(co2*>)] /(2e)

where the constants o>i and co2 are defined as

r i'/2
2= [(1 -e)-V(l-e)2-12eJ /V2

(36a)

(36b)

(37a)

(37b)

The integration constants Cb St, C2, S2 can be expressed in
terms of the initial conditions and their first-order derivatives:

C2 = {(co2 + 3)({0 + c/3) + 27]^] /(co2 - co^) (38a)

S2 = {(co2 - 1)̂  + 2€77o] /[co2(co2 - «|)] (38b)

(38c)

(38d)

V. Approximate Analytical Solutions
A. Circumferential Thrust

The exact analytical solution derived in Eqs. (30) is some-
what complex for routine usage, especially in the calculation of
co and Xi. Therefore, it may be of interest to investigate the
possibility of simplifying the results, for instance by means of
asymptotic expansions in the small parameter e.
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First, Eqs. (29) are analyzed as to their asymptotic proper-
ties. By writing d = @±w/2 (with upper arid lower signs for e >
and <0, respectively), it can be assured that d is small, and so
from Eqs. (29) one gets

6 = arctan f 1 /( - tan/3)]

-arctan(3€V3)s3eV3-f0(e2) (39)

Subsequently, a is expressed in terms of d using

tan(0/2) = tan(6/2 =F T/4)

so that

|tan(/3/2)| 1/3= =F 1 +S/3=FS2/18 + 0(63

(40)

(41)

This result implies that a. is close to TTr/4, and so a can be
expressed as a = Ai=7r/4 with small A. Therefore, one can
expand:

tana = | sin(2A) T11 /cbs(2A)

(42)

Since Eqs. (41) and (42) must be identical according to Eqs.
(29), it follows that As6/6 and, finally,

a = 6/6 T 7T/4 = eV3 /2 =F Tr/4 + 0(e3) (43)

This equation is very useful as it provides a direct (but approx-
imate) connection between e and the corresponding a. It may
be noted that the result is valid for € negative or positive. The
exponents in Eqs. (30) can now be approximated as

(44a)

(44b)

Xi s2Vl73 tan[eV3 + 0(e3)] =

a? = csc(2o:) = T (1 + 3e2/2) + 0(e3)

With the aid of these asymptotic results it is possible to expand
the integration constants Ai9 Bl9 B2 of Eqs. (31) in terms of
powers of e up tc> sec.prid order.

After substituing the expansions of these constants in the
relevant Eqs. (30), the approximate solutions up to the first
order (in terms of e) become

cos* +

+ 2 + & " sin* (45a)

sin* +

(45b)

In fact, it has been confirmed by .substitution that these solu-
tions satisfy the system of Eqs. (19) to first order.

Second-order terms cannot easily be calculated and are in
fact not useful as more accurate exact solutions have already
been given.

By means of the well-known classical zeroth-order arid the
new first-order solutions established here, the relative mo-
tion of the probe under constant circumferential thrust can
readily be expressed in a conventional perturbation series. The

zeroth-order "unforced" Clohessy-Wiltshire solutions are
well known (see for instance Ref. 6). [In fact, they will be given
below in Eqs. (48)].

Finally, the special solutions for the case when all initial
conditions are zero will be presented. These results can be used
for visualization of the evolution of an orbit under circumfer-
ential thrust relative to the corresponding unperturbed circular
orbit

£(*>) = 2e(i> - sin*) + 0(e2)

ri(v) = 4e(l - cos*) - 3e*2/2 + 0(e2)

(46a)

(46b)

B. Radial Thrust
It is of interest to obtain first-order approximate solutions

of the system presented in Eqs. (21). Thereto, expansions of
the constants o>i, c*>2, C\9 S\9 C2, S2 appearing in Eqs. (37) and
(38) are required

(47a)

(47b)

e2) (47c)

(47d)

C2 = 4?o -f 2r/^ + e(24£ 0 + l*no + 4/3) + 0(e2) (47e)

(47f)

It is seen that co2 and S2 contain terms of order VF. These square
roots will cancel in the final results because of multiplication
with similar terms.

After expansion of the trigonometric functions in Eqs. (36),
the zeroth-order results can be written as

- cos* sn*

- 2&(1 - cos*)

sin*

(48a)

(48b)

These results are identical to the ones for the uncontrolled
Clohessy- Wiltshire equations (which provide a useful check).

The first-order results can eventually be rearranged in the
following form:

- cos*) + & sin* - 2^ * cos*

* sin* (49a)

)̂ = (4770- -cos*) + 2(1 + 27 £<>+ sin*

(49b)

The cbmplete solution to first-order accuracy is now readily
obtained by addition of the results of Eqs. (48) and (49).

It is of interest to calculate the special results for the case
when all initial conditions are zero. This particular case de-
scribes the motion of the satellite under constant radial thrust
relative to the corresponding free orbit:

) = e(l- cos*) + 0(e

r?(*) = - 2e(* - sin*) + 0(e2)

(50a)

(50b)
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VI. Application of the Results
In many applications, fuel-optimum rendezvous trajectories

need to be determined under the assumption that the propul-
sion system of the probe is capable of providing constant and
finite thrust along the circumferential and radial directions.
Since normally the thrusting periods extend over a finite time,
the maneuvers cannot be considered as impulsive, and ques-
tions on the optimal duration and sequence of thrust arcs arise.

The problem to be considered here consists of determining
the circumferential thrust history for the fuel-optimum ren-
dezvous maneuvering between the initial probe orbit and the
final target orbit, where both orbits are considered to be circu-
lar and coplanar.

A. Numerical Algorithm
For the solution of this optimization problem, the standard

recursive quadratic numerical algorithm OPXRQP7 has been
used. The optimization is carried out in the inertial geocentric
reference frame, i.e., on the basis of Eqs. (7). The parameters
to be optimized for each thrust and coast arc are the start and
end times pf the thrust intervals. The performance index is the
mass remaining after completion of the rendezvous. Con-
straints arise from the condition that at the applicable time, the
achieved orbital elements including the orbital phase must
match those of the target orbit within predefined tolerances.
An initial coast arc is allowed so that rendezvous can be
achieved using only two finite-thrust burns (as for the corre-
sponding impulsive Hohmann transfer maneuvers).

To start the optimization process, initial guesses of the vari-
ables to be optimized are required, and these are usually
derived from the approximate impulsive solutions provided by
the Clohessy-Wiltshire model. The corresponding finite-thrust
intervals are constructed with midpoints coinciding with the
impulsive thrusts. The optimization algorithm integrates the
equations of motion on the basis of this set of initial guesses.
At the end of the last thrust arc, the achieved orbit together
with the total fuel used and the values of the constraints are
calculated. The algorithm proceeds iteratively by determining
the direction in which the optimization criterion* i.e., the final
mass, is improved and/or the violation of the constraints is
reduced until no further significant improvement in these val-
ues can be obtained. After the optimal maneuver parameters
have been determined, the time history of the relative position
and velocity of the probe with respect to the target can be
computed by subtracting the characteristics of the two orbits.

B. Use of the Analytical Results
The rendezvous trajectories of the probe have also been

obtained by substitution of the analytical results for circumfer-
ential thrust established previously into the numerical opti-
mization scheme. These formulas provide the position and
velocity of the probe relative to the target under the assump-
tion that a constant thrust force is acting on the probe over the
different thrust (including coast) arcs. The results obtained
with this "analytical" procedure have been compared with
those resulting from the completely numerical algorithm for a
practical rendezvous scenario.

C. EURECA Retrieval Example
In the example considered, the probe and target orbits are

assumed to be coplanar, and the probe is allowed to coast in
the initial orbit until the appropriate phase angle for starting
the rendezvous maneuver is established. The example is based
on a realistic scenario related to the retrieval maneuvers of the
EURECA spacecraft with the Shuttle. The target (Shuttle)
orbit is taken as circular at 315 km altitude. The acceleration
delivered by EURECA thrusters is 0.0206 m/s2 assuming a
mass of 3400 kg and a thrust level of 70 N.

Figure 3 illustrates the trajectory of EURECA relative to the
target (during the rendezvous maneuver obtained with the nu-
merical procedure (continuous line) and with the exact circum-
ferential solution (dashed line). On the scale of Fig. 3, the
approximate solution coincides with the exact solution. The
initial semimajor axis difference is +10 km, and the phase
angle difference is + 5 deg, which amounts to a range of about
580 km. It should be mentioned that an extended coast arc
precedes the first thrust arc, which starts at a range of about
27 km. The crosses shown in each of the trajectories represent
time increments of 6 min. The closer spacing at the end of the
maneuver reflects the smaller relative velocity.

When the exact analytical results are used, the ejrpr at ren-
dezvous amounts to 291 m in the x component and 818m in the
y component, see Table 1. The use of the approximate analyt-
ical solution, on the other hand, results in a slightly worse
error in the y component with respect to the exact solution of
only about 2Q m. This is a small error in comparison with the
error of both analytical formulations with respect to the nu-
merical results. These results indicate therefore that the errors
of both analytical solutions are introduced because the relative
motion model used in the analysis has been linearized in terms
of the ratio of the relative vs the orbital distance. This intro-

20.0.

2-nd
thrust
», M I I I M .

Fig. 3 Comparison of analytical
and numerical rendezvous trajecto-

B. 9.
X-COMPONENT (KM)
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Table 1 Accuracies of circumferential thrust solutions in meters

End 1st thrust
arc, 2.3 min

End coast arc,
43 min

End 2nd thrust
arc, 2.3 min

Exact analytical results
Arcomp 4 293 291
.ycomp 1 750 818

Approximate analytical results
xcomp 5 294 292
.ycomp 1 758 839

Table 2 Accuracies of radial thrust solutions

Exact analytical results
Range, km

25
50

350

Error in x comp, m
7

45
534

Error in y comp, m
1
9

284

Table 3 Accuracy of approximate analytical solution

Approximate analytical results

Thrust level, N
10
45
70

140
280
560

Value of
ex lO 3

0.3
1
2
5
9

20

Error in
x comp, m

0.002
0.2
0.7
6
40
400

Error in
y comp, m

0
0.02
0.08
0.8

7
60

duces increasing errors for growing relative distances. The
error due to the perturbation expansion in e in the approximate
solution is relatively insignificant in comparison.

A complete summary of the resulting accuracies of the ana-
lytical models (with respect to the numerical integration) at the
various stages of the relative trajectory is provided in Table 1.
The figures shown are the final relative position errors in me-
ters for the rendezvous maneuver starting out with initial val-
ues A0 = 1Q km and AJ> = 5 deg.

In conclusion, the comparison between the numerical and
the analytical results shows that the two analytical methods
can be used for representing the relative motion of the probe
under circumferential thrusting, provided that the range be-
tween the two vehicles remains relatively short.

It may be mentioned that there are techniques for improving
the validity of the relative motion solutions over large ranges,
namely by "curving" the ^-coordinate of the local station
frame along with the gravity field line, see for instance Ref. 8.
It is expected that, with such a technique, the analytical solu-
tions can be significantly improved for relatively large initial
ranges.

D. General Accuracy Assessment
The results for radial thrust are summarized in Table 2. The

figures represent the final relative position errors in meters
after a thrust duration of about 5 min. The same thrust value
as used above has been taken here. The comparison is based on
the results of the exact analytical formulation relative to nu-
merical integration over the thrust arc.

As before, the errors in the final relative position obtained
by the analytical formulation are caused by the linear nature of
the theory. In comparison, the errors induced by the approxi-
mation of the thrust expansion are much less significant.

Finally, the numerical and analytical results have been com-
pared also for different thrust values under circumferential
and radial thrusting and for different combinations of the

initial locations of the probe and the target. The results of the
comparison between the exact and approximate analytical the-
ories for different e values for the case of circumferential
thrusting are presented here. This evaluation provides an indi-
cation of the acceptability of the approximate analytical solu-
tion for different values of the perturbation parameter. The
comparisons are made after the first thrust arcs of a fixed 2.3
min duration.

Table 3 summarizes the results which show that significant
errors occur only for e values larger than about 0.01. The
figures shown refer to the final relative position errors in me-
ters. It should be pointed out that the thrust levels shown are
calculated from the e values by using the EURECA mass value,
i.e., 3400 kg. The initial range difference is taken as 584 km,
but the thrust starts at a range of about 27 km.

VII. Concluding Remarks
A general model for relative motion under arbitrary forces

on each of the two satellites has been constructed and applied
in a realistic rendezvous scenario. The major results of the
paper may be summarized as follows.

1) A general formulation for the relative motion under arbi-
trary forces on each of the satellites has been established.

2) Exact analytical results for the linear Clohessy-Wiltshire
equations including constant circumferential or radial thrust
have been derived.

3) From the exact solutions, first-order (in terms of thrust/
gravity forces) perturbation solutions have been obtained by
expansion.

4) The analytical results have been imbedded in an opti-
mization algorithm used in rendezvous problems and applied
to a realistic scenario involving the European Space Agency's
retrievable carrier (EURECA) and the Shuttle.

5) The accuracies of the analytical results were assessed by
comparison with those of a numerical algorithm. It is con-
cluded that the errors are acceptable for many practical appli-
cations.

6) The error induced by the linearization in terms of the
relative range dominates the error due to expansion of the
thrust parameter performed in the approximate analytical the-
ory. Therefore, there is no significant loss of accuracy when
using the approximate analytical results.

7) The analytical results obtained here should be useful in
mission analysis of rendezvous problems as well as for poten-
tial onboard implementations.
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