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Approximate Free-Molecular Flow
Torques on Spinning Satellites

Jozef C. Van der Ha'

Abstract

General expressions for torques induced by the free-molecular flow interaction with a spinning
satellite are presented. Since the results are intended for application to spinning satellites in
geostationary transfer orbits a number of simplifications which are consistent with this environ-
ment are introduced. Expressions for the torques are obtained by first integrating the contribution
of an infinitesimal surface element over the appropriate part of one spin revolution. After-
wards, the expressions are completed by performing the integration over all exposed satellite
surface elements. In particular, results are given for idealized cylindrical and box-like satellite
configurations.

Introduction

The nature of free-molecular momentum interactions with satellite surfaces has been
investigated by many authors over the past few decades. The generally adopted formu-
lation makes use of accommodation coefficients for the normal and tangential momen-
tum transfer, e.g., Schaaf e al. [1]. The objective of the early research in this area was
related to the calculation of drag coefficients required for predicting orbital decay rates,
cf. Cook [2] and Izakov [3].

More recently, elaborate models for prediction of free-molecular forces as well as
moments on spacecraft have been constructed and subjected to experimental verifi-
cation, cf. Boettcher ez al. [4], [S] and Koppenwallner [6]. Realistic satellite configu-
rations with surface irregularities can be analysed by a numerical superposition of the
contributions of a large number of small elementary surface elements.

In the present paper relatively simple closed-form expressions will be derived for
free-molecular torques upon extended spinning satellite surfaces. The accommodation
coefficients, which are usually not precisely known, appear as parameters in these
results allowing sufficient flexibility for performing parametric analyses. Since the
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application of this work is primarily directed to satellites in geostationary transfer orbits
a few minor simplifications are introduced which are compatible with this environment.

The objectives of the investigation are twofold: first, the resulting torque expressions
would allow a quick assessment of possible attitude variations of a spinning satellite,
for example when crossing the perigee region in a geostationary transfer orbit [7].
Second, the results can be used as building blocks in the precise numerical analyses of
highly irregular satellite configurations at substantial savings in computer time as
compared to approaches based on infinitesimal elements.

General Model of Aerodynamic Interaction with Satellite Surface

A proper model for aerodynamic interactions with satellite surfaces should be based
on free-molecular gas flow theory, as the mean free path of atmospheric particles is
large compared to a representative spacecraft dimension for present-day satellite appli-
cations. For a typical ARIANE geostationary transfer orbit with perigee altitude near
200 km, a mean free path of about 220 m is found for molecular nitrogen (Boettcher
[4]). The re-emission of particles from the satellite’s surface results in an increased
density near the surface. In this region the mean free path can be shown to be shorter
than the undisturbed path by a factor v, /v, where v is the orbital velocity and v, is the
most probable speed of molecules reflected (Cook [2]). The molecular speed v, is
directly proportional to the square root of the satellite’s surface temperature 7,,. On the
basis of a surface temperature T,, of about 300 °K and a velocity of 10.2 km/s (at
perigee) a smallest value for the mean free path of 10 m is obtained. Therefore, one is
justified to apply free-molecular flow theory for studying aerodynamic drag effects on
a typical satellite in geostationary transfer orbits.

General Model for Pressure and Shear Forces

A commonly adopted model for the pressure and shear forces acting on a surface
element due to free-molecular flow makes use of the coefficients for normal and
tangential momentum accommodation (Schaaf ef al [1])

.= (pi — p)/(pi — pw) (D)
g, = (Ti - Tr)/Ti (2)

where o, and o, are the normal and tangential momentum accommodation coefficients,
p: and p, are the normal components of incident and reflected molecular momentum
flux, and p,, is the normal momentum component for molecules re-emitted from the
surface at Maxwell thermal speed corresponding to T,,. 7; and 7, are the tangential
components of incident and reflected molecular momentum flux.

Since the re-emission profile of the accommodated molecules at surface temperature
may be taken as symmetrically diffuse, re-emission will not induce any shear stresses
on the surface. The coefficients defined in equations (1) and (2) are not known a priori
and would have to be determined experimentally (e.g., by molecular-beam methods).
On the basis of such experiments it has been suggested that for satellite applications o,
is close to 1 and o, is about 0.9 (Izakov [3]). This implies that p, is virtually equal to
p., meaning that the incident molecules are to a large extent accommodated to the
surface before being re-emitted with kinetic energies corresponding to the surface
temperature. From o, = 0.9 it follows that relatively little specular reflection takes
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place. Naturally, it should be kept in mind that the values quoted above are only
indicative and in reality variations may occur depending on surface temperatures,
velocities and angles of incidence as well as material properties of the surface.

The pressures and shearing stresses appearing in equations (1) and (2) can be deter-
mined from the classical Maxwell distribution function by integrating over all possible
values of the velocity space as shown, for instance, by Koppenwallner [6]

pi = pviBf(B)/(2V'm) 3)
pw = pv3V(T,/T)g(B)/4 4)
7, = pviBg(B) tan 6/(2V'm) (5)

where v,, is the most probable thermal speed of incident molecules, T is the atmospheric
temperature, and p is the air density, and the following abbreviations have been used

f(B) = exp(=B% + V7 [B + 1/(2B)1{1 + erf(B)} (6)
g(B) = exp(—B) + Var {1 + erf(B)} (7)
B = (v/vn) cos 6 (8)
B
erf(B) = 2/\/7_7J' exp(—x?) dx 9)

The angle of incidence 6 of the flow with respect to the normal of a surface element
is shown in Fig. 1. For the range of ambient atmospheric temperatures between 500 and
1500 °K the molecular speed ratio v/v,, would be between about 16 and 11 for typical
perigee speeds (10.2 km/s). This means that the expected thermal speeds of the mole-
cules are small in comparison to the orbital velocity.

INCIDENT NORMAL SPECULARLY
MOLECULAR T0 SURFACE REFLECTED
FLOW FLEW

—_
2777777777777777 E AR

FIG. 1. Flat Surface Element in Uniform Free-Molecular Flow.
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The pressure and shear stress induced by the flow follow directly from equations (1)
and (2)

P = Di + pr= (2 - Un)pi + OnPw (10)
TET,— T, = O,T; (11)

The direction of the pressure p acts opposite to n in Fig. 1 and that of the shearing stress
acts in a positive direction with respect to the incident flow, i.e. along unit-vector t.
Substitution of the expressions of equations (3)-(5) into equations (10) and (11) gives

p = p2{(2 — a,)Bf(B)/2V7m) + o, V(T,/T)g(B)/4} (12)
T = pvio,Bg(B) tan /(2Vm) (13)

These results contain two free parameters, i.e. the accommodation coefficients o, and
o, which are essentially determined by the surface conditions.

Special Model for Geostationary Transfer Orbits

In the case of typical (ARIANE) Geostationary Transfer Orbits (GTO) a few sim-
plifications can be performed which would make the model presented above more
tractable for routine applications. Since the molecular speed ratio is expected to be
above 11 as noted before the following inequalities are valid

exp(—B) < 0.0038Vw{l + erf(B)}, B >2 (14)
lerf(B) — 1] < 0.003, B >2 (15)

Therefore, erf(8) may be replaced by 1 and the term exp(—B?) can be neglected
altogether for all value of B larger than 2. The functions f and g defined in equations
(6) and (7) become now

fB)=2Vm[B+1/@p)). B>2 (16)
g(B) =28Vm, B>2 (17)
For still larger values of B8 a further approximation can be made

fB) =gB) =28Vm, B>1 (18)

which holds true with less than one percent error. Remembering the definition of B in
equation (8) it is seen that the approximation of equations (16) and (17) can be ap-
plied regardless of atmospheric temperature as long as the angle of incidence 6 is less
than 77 degrees. The stronger approximation in equation (18) holds when 6 is less than
37 degrees. For a typical ARIANE GTO the angle of incidence at perigee for the
directly exposed surface area would be about 20°, so that equation (18) could be used.
For the side walls the angle of incidence is around 70° so that equations (16) and
(17) can still be applied. With the aid of the expressions obtained in equations (16)
and (17) the following simplified formulas for the normalized pressure and shear
stresses can be established

p* = p/(*/2) = 2 — 0,)[2cos’ 0 + (vu/V)]
+ a-,,\/;r (v./v) cos 6 (19)
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™* = 7/(pv?/2) = o, sin(26) (20)

These results are visualized in Fig. 2 for a representative value of T,,/T = 0.3 and
o, = 1.0, o, = 0.9. It is seen that even for rather extreme values of v/v,, the be-
havior of the pressure p* does not change significantly. Therefore, it appears that the
knowledge of v,, (or the ambient atmospheric temperature T) is not very critical for
arriving at acceptable torque results.

From the expressions in equations (19) and (20) the drag and lift coefficients which
represent the resulting forces (per unit area) in the direction opposite to the velocity
vector and normal to it, respectively, can be obtained immediately

Cp(0) = p* cos @ + 7* sin 0 (21)
C.(0) = p*sin 6 — 7% cos 6 (22)

For the parameters used in Fig. 2 the maximum value of the lift coefficient is near § =
30° but amounts to only about 6 percent of that of the drag coefficient (for 6 near 5°).

Torque on Arbitrarily Oriented Spinning Surface Element
General Geometry
The torque acting on an arbitrarily oriented spinning surface element will be derived

from the expressions for the normal and shear force coefficients as given in

Tw/T=0.3;on=1 ;04=09

2,5
2[0 \
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15
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FIG. 2. Normalized Pressure p* and Shear Stress 7* as Function of Angle of Incidence 6.
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equations (19) and (20). It is evident that the torque depends on the orientation of the
orbital velocity vector relative to the body-fixed reference frame which contains the
surface element. In terms of components along the local reference frame with unit-
vectors &, , £ (Fig. 3) the orbital velocity vector can be expressed in the form

v=r&+ (h/r)m = (u/h){e sin v & + (1 + e cos v)n} (23)

The orbital radius is r, the eccentricity and true anomaly are e and v, and the orbital
angular momentum (per unit mass) is 4. u is the Earth’s gravitational parameter. The
transformation matrix between the local £, %, { and inertial X, Y, Z reference frames
is well known

1' =
cos ¥ cos ) — sin Dsin Qcosi cos ¥sin  + sin P cos Qcosi sin vsini (X
—sin 7 cos Q — cos ¥ sin Q cos i —sin ¥ sin  + cos ¥ cos Q) cosi cos vsini||Y
sin €} sin i —cos () sin i cos i Z
(24)

The argument of latitude 7 is ¥ + w, where v is true anomaly and w is the argument
of perigee, as indicated in Fig. 3. The right ascension and inclination are () and i. By
virtue of equations (23) and (24) the velocity vector v can be expressed in terms of the
components along the inertial X, Y, Z axes.

The satellite’s spin axis attitude vector z is usually identified by its right ascension
a and declination & in inertial space

X
z = (cos a cos §,sin a cos 8,sin 8)|Y (25)
7
1
w* ORBIT MOTION

SATELLITE POSITION
PERIGEE

—> Y

VERNAL EQUINOX [ |NE OF NODES

FIG. 3. Geometry of Local &, 7, { Reference Frame.
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The angle between v and z is designated by A
A = arccos{[(v; cos @ + v, sin a) cos & + v; sin 8]/v} (26)

The body-fixed satellite frame (x, y, z axes) rotates about the z axis with angular rate
w. In order to simplify subsequent calculations a ‘frozen’ reference frame (Xo, Yo, 2o
axes) is introduced in such a manner that the velocity vector v lies in the X,, Z, plane,
as indicated in Fig. 4. This frame may be considered quasi-inertial, as it is considered
inertially fixed over a certain interval of time until the velocity vector has changed by
a prescribed small amount, after which a new frozen frame is established. In most
applications it is justified to apply Newton’s laws over periods amounting to a number
of spin revolutions. The actual body-fixed x, y, z frame follows after rotation over the
spin angle ¢ = w(t — t) with ¢, an epoch where both frames coincide

X cos ¢ sin¢d 0][x
y|=|—sin¢ cosd Of|yo 27
/ 0 0 1{]z

Free-Molecular Force on Arbitrary Surface Element

An arbitrarily oriented flat surface element dA with geometrical center at R in the
body-fixed x, y, z coordinate frame which has its origin at the center of mass is
considered in Fig. 5. With the aid of equations (19) and (20) the drag force acting on
dA can be expressed in the form

1
dF = —Epvz{[c0 + ¢, cos 6 + ¢, cos’ @n — cysin 6 cos O t}dA  (28)

with
co = 2 = 0,) (/) (29)
¢ = 0,(vn/v) (@T, /T)? = o, N7 (v, /) (30)
c=22- 0, (31)
¢ = 20, (32)
SPINAXIS

2y, Z

VELOCITY
vy

‘p —D
SATELLITE CENTRE OF MASS®

FIG. 4. Geometry of Quasi-Inertial Frozen Frame xo, yo, Zo and Body-Fixed Frame x, y, z.
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FIG. 5. Orientation of Flat Surface Element in Body-Fixed Frame.

The unit-vectors n and t refer to the outward normal to the surface and the tangential
direction on the surface pointing away from the incident flow, as shown in Fig. 1

=sinft—cosfn (33)

It turns out to be advantageous to write the force vector in terms of u and n rather than
intandn

1
dF = —Epvz{[co + ¢, cos 8 + (c; — ¢3) cos’ ]n — ¢; cos 6 u}dA (34)

The coefficients ¢; (j = 0, ...,3) can be interpreted physically as follows: ¢, is the
normal momentum transfer of incident and specularly reflected molecules due to
thermal speed, ¢, is the normal momentum transfer of molecules re-emitted after
accommodation at surface temperature, ¢, is the normal momentum transfer of incident
and specularly reflected molecules due to orbital speed, and c; is the transverse momen-
tum transfer of incident molecules which are not specularly reflected.

In the derivation of equation (34) a simplification has been imposed, namely the
velocity of the spinning surface element is taken equal to the satellite’s velocity vector.
This means that the rotational velocity wR has been neglected in comparison to the
orbital speed v. This assumption is justified since for the applications at hand dissipative
torques produced by the rotational velocity (cf. Beletskii [8]) are indeed essentially
smaller than the torques studied here.
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Averaged Torque Due to Force Acting on Arbitrary Surface Element

The elementary surface element dA is completely identified by the lever arm R
indicating the position of its geometrical center with respect to the satellite’s center of
mass and its outward normal vector n. It is convenient to define these vectors in terms
of the familiar right ascension and declination angles relative to the body-fixed refer-
ence frame as indicated in Fig. 5. Because of the simple relation between the x, y, z
and Xo, Yo, Zo frames (Fig. 4), it is easy to express R and n in terms of the quasi-inertial
frozen frame, using the orientation angles indicated in Fig. 5

R = R{cos(¢ + B) cos 9 X, + sin(¢p + B) cos ¥ yo + sin ¥ zo} (35)

n = cos(¢p + B) cos y X, + sin(¢p + B) cos y yo + sin y z, (36)

The drag force acts only when (u - n) < 0, which amounts to the interval bounded by
the limiting values ¢, ¢, found by solution of the following equation

u-n= —sin A cos y cos(¢p + B) —cosAsiny =0 (37)
The two solutions can be expressed as
b= B *x (38)
where
x = arccos(—tan y/tan A) (39)

The resulting intervals over which the drag force is acting can be visualized from Fig. 6
for the relevant square in the A, y plane. The following eight cases may be
distinguished.

Casel (0< A< 7/2,A <vy<m/2)

In this region the argument of the arccos function in equation (39) is always less than
—1sothat y is undetermined. Since for ¢ = —B onefindsu * n = —sin(A + y) <0,
it follows that the drag force acts over the full spin period, i.e. ¢, = ¢, + 2.
Casell (O< A <7w/2,0<y <))

Here, the argument —tan y/tan A takes values in the range (—1,0), so that
/2 < xy < m with the point ¢ = —p being within the drag interval.

Caselll (m/2 <A <m,0<y<m—2A)

Here the argument lies between 0 and 1, so 0 < y < /2 with again ¢ = —f
within the drag interval.

CaselV (w2 <A<m,m—A<y<mw/2)

Here, the argument is larger than 1 and y is undetermined. At ¢ = —f one finds
—sin(A + y) > 0for m < A + y < 3m/2, so the drag force is absent over the full
spin period, i.e. y = 0.
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FIG. 6. Visualization of y as Function of Relevant Values of y and A.

The remaining four areas V to VIII in the A, 7y plane can be analyzed in a similar
manner. From physical considerations, however, it is evident that complete symmetry
exists between (A, y) and (m — A, —7v), as is seen in Fig. 6.

The torque dM due to the force dF acting on a surface element dA follows from
equations (34) and (35)

dM =R X dF = —%pvz{[co —ci(u-n) + (c; — ¢3) (- n)*](R X n)
+ cy(u - m) (R X u)}ldA (40)

where cos & = —(u * n) has been substituted. After averaging this torque over the
interval where the drag force acts, i.e. (¢, ¢,), the following representation is
established

1
(dM)average = _?PVZ{CONO - ClNI + (CZ - C3)N2 + C3U}dA (41)
with
¢
=1/2m) | (u-n)(R X n)dp, =012 (42)
b

b2
U=1/Q2m) L (u-n)(R X u)do (43)
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In order to evaluate these integrals, the angular variable y = ¢ + B corresponding to
the phase of n relative to the quasi-inertial X, yo, Z, frame is introduced. With the aid
of the expressions in equations (35) and (36) it can be seen that

u'n=B,+ B, cos ¢ (44)

R X n = R{(C, cos y + C, sin ¢)x, + (C, sin ¢y — C, cos )y, — Cszo} (45)
R X u = R{(D, cos y — D, sin )X, + (D, + D, sin ¢ + D, cos )y,

+ (D3 cos ¢ + D, sin ¢)zo} (46)

with coefficients

By = —sin y cos A 47)

B, = —cos y sin A (48)

C, = cos ¥ sin v sin(8 — B) (49)

C, = cos ¥ sin y cos([? — B) — sin $ cos y (50)
C; = cos y cos y sin([% - B) (51)

Dy = —sin ¥ sin A (52)

D, = —cos ycos A sin(/§ - B) (53)

D, = cos ¥ cos A cos(B — B) (54)

D; = cos ¥ sin A sin(ﬁ - B) (55)

D, = cos ¥ sin A cos([% - B) (56)

Since all of the angles appearing here are fixed with respect to the satellite frame
(cf. Fig. 5) all coefficients B;, C; and D; are constants. When substituting the results
of equations (44)—(46) into the integrals in equations (42) and (43), four non-vanishing

integrals [;, j = 0, ..., 3 can be identified in which each of N; and U can be expressed
[}

I, =1/2m) (cos )Y dy, j=20,1,2,3 (57)
¥y

Due to the symmetry of the integration interval relative to ¢ = 0, all integrals
containing an odd power of sin ¢ vanish. The integrals in equation (57) have been
evaluated for the different regions displayed in Fig. 6, as shown in Table 1. It is seen
that continuity is preserved across the borders of no-drag and full drag regions.

The integrals N; and U defined in equations (42) and (43) can now be expressed in
terms of I;, j = 0, ..., 3 using the results of equations (44)-(46)

N, = R{Clllx() = G Ly, — Calozo} (58)
N, = R{(BoI, + B, L,) (Cx, — Ca2yo) — Cs(Bol, + B, 1))z0} (59)

N, = R{(Béll + 2ByB, I, + 3%13) (Cixo — C2Y0) - C3(B(2) + 2ByB,1I, + B%Iz)zo}
(60)
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TABLE 1. Summary of Integrals I; for Different Regions in (A, y) Plane (cf. Fig. 6)

Regions U, [V Iy 1, I, I,

I, VIII - T 1 0 1/2 0

11, vII . . . .

1L VI } -x x x/m (siny)/m (x +sinx cos x)/2m  (sin x)/m — (sin’ x)/37

v, v 0 0 0 0 0 0

U = R{(Bo/], + B\L,) (DX, + D)y, + Dszo) + Do(Boly + Blll)yO} (61)

The general result given in equations (41) and (58)—(61) completes the calculation of
the averaged torque acting on a flat arbitrarily oriented spinning surface element dA.
It should be noted that the result is expressed in terms of components along the frozen
reference frame. The axes belonging to this frame are allowed to slowly vary from one
spin revolution to the next.

Torque on Idealized Satellite Configurations
Cylindrical Shell

The analysis presented above for an elementary surface element dA is now extended
to an actual surface configuration, i.e. a cylindrical shell representing the surface of a
spinning rotationally symmetric spacecraft (Fig. 7). The result of equation (41) with
averaged integrals given in equations (58)—(61) refers to the torque contribution of a
single surface element dA averaged over a complete spin revolution. By integration

SPINAXIS
2,2,
VELOCITY
v
_a\
x dA=a dp dI
|1 \ﬁn
CENTRE L BG y
UF MASS-—' = \‘L\;T;p/:
Y,
L q://>\ °
'/" ----- 'T‘ ﬁ=§
%
Xo ¥
X

FIG. 7. Geometry of a Cylindrical Satellite Configuration.
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over the full surface area, the total resulting torque acting on the satellites is obtained.
With the aid of cylindrical shell coordinates 8, € (so that dA = a dBd¢, where a is the
cylindrical shell radius and 0 =< B < 27, —¢, < € < {,) the averaged total torque can
be expressed as

2m
1 6
Maverage = ‘?P"'Za[ f {CONO - ClNl + (CZ - C3)N2 + C3U} dBd€
B=0 “{=—¢;
(62)

For a particular cylindrical surface element one has 8 = ﬁ, son = cos Bx + sin By
with ¥ = 0 and R = a(cos Bx + sin By) + €z with ¥ = arctan (€/a). This means
that the coefficients in equations (47)-(56) can be simplified to

By=C,=Cy;=D,=D;=0 (63)
B, = —sin A (64)

C, = —¢/R (65)

Dy = —(€/R) sin A (66)

D, = (a/R) cos A (67)

D, = (a/R) sin A (68)
Substitution of these coefficients in the vector integrals of equations (58)—(61) leads to
No = ¢, y, (69)

N, = =4I, sin A y, (70)

N, = €I, sin® A y, (71)

U= (¢, sin A — al, cos A) sin Ay, (72)

The integrals I;, j = 1,2, 3 are determined by the fact that y = /2 as can be seen
from Fig. 6 for y = 0 and any value of A. Table 1 provides now the results

I =1/m (73)
L=1/4 (74)
L =2/3m) (75)

With these results the final torque expression can readily be established by integration
of equation (62) over the cylinder

1
Maverage = _5pv2a(€l + €2)
1
{((31 ) [co + ¢/(m/4) sin A + ?(202 + ¢,) sin? )t]

— acy(m/4) sin(2/\)}y0 (76)
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The validity of this result has been confirmed by a comparison with an exact formula
provided by Gustafson [9]; the difference is due to terms of order (v,,/v)* in the
coefficient of sin?> A and amounts to less than 1 percent for the molecular speed ratios
considered here.

It is of interest to note that the resulting torque vector acts along Yo, i.€. in a direction
normal to the plane defined by the spin and velocity vectors. This qualitative result can
be confirmed by symmetry considerations.

Circular Flat Surface Area

An actual cylindrical satellite configuration is also affected by the drag force
acting on one of its flat circular sides. In terms of polar coordinates s, B one has
dA = sdsdB and

27 a

|

Mavemge = "E‘PV2J f {CONO - ClNl + (C2 - CS)NZ + C3U}S dS dﬁ
B=0 “s=0

a7

Since n = *z and R = s(cos B x + sin B y) * R.z the corresponding right as-
cension and declination angles become B = fi’, vy = +=7/2,and ¥ = *arctan (R./s),
where R, designates the distance from the centre of the surface to the centre of mass.
The +, — sign refers to a top and bottom surface, respectively.

The coefficients appearing in the vector integrals can be simplified as follows

By, = Fcos A (78)
B,=C,=C3;=D,=D;=0 (79)
C, = *s/R (80)

Dy = F(R./R) sin A 81)

D, = (s/R) cos A (82)

D, = (s/R) sin A (83)

From Fig. 6 it is seen that the drag force acts only for 0 < A < /2 in the case
vy = 7/2 and for m/2 < A = 7w when y = —/2. In both of these cases the drag
acts over the full interval. According to Table 1 the integrals I; become under these
conditions

Iy=1 (84)
11 = 13 =0 (85)
L=1/2 (86)

The resulting averaged torque over the circular surface area can now be evaluated using
the expressions in equations (58)—(61) and integrating as indicated in equation (77)

1
Maverage = _ZPVZARL’CB Slﬂ(”‘))’o (87)
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with A = ma’. The resulting torque acts along the negative y, direction when it is a
“top” surface (i.e., y = 7/2 and 0 < A < 7/2) and along the positive y, direction
when it is a “bottom” surface (i.e., y = —# /2 and /2 < A < ). The torque found
here is due to the incident transverse momentum transfer of molecules which are not
specularly reflected.

Rectangular Flat Surface Area

The general results are now applied to an extended flat surface with area A rotating
about the satellite’s spin axis and oriented arbitrarily with respect to the satellite’s
equatorial plane. The orientation is indicated by the angles B and y designating the
right ascension and declination of the outward normal to the surface within the space-
craft frame, cf. Fig. 5. The position vector of the geometric centre of the surface with
respect to the centre of mass is denoted by R..

It is helpful to recognize that the shape of the rectangular surface area does not enter
into the final torque results (as long as the surface characteristics such as temperatures
and accommodation coefficients can be considered to be homogeneous, of course).
This can be understood on the basis of symmetry considerations: the contributions of
a certain surface element dA at R = R, + p can be split up in a “main” part due to
R, and a “relative” part due to p. The latter contribution is cancelled by the cor-
responding contribution of the “opposite” element at R’ = R, — p as can readily be
seen from the integrals in equations (42) and (43). Therefore, the integration of the
vector functions N;, j = 0,1,2 and U over the surface area A can be performed
immediately

1
Ma\'emge = _Epva{CONO - ClNl + (CZ - C3)N2 + C3U}R=Rc (88)

with applicable expressions for the integrals N; and U given in equations (58)-(61) for
the general case.

While the results obtained are valid for an arbitrary surface orientation, the explicit
expression of the torque vector components in all relevant angles becomes rather
unwieldy. Therefore, a more practical special case is considered in some detail.

A flat “side-surface” area with centre at R. from the centre of mass is considered.
The normal n to the surface is oriented such that its right ascension 8 is equal to B in
the spacecraft frame, cf. Figs. 5 and 8. Note also that y = Osothat y = 7 /2 asis seen
in Fig. 6, whereas the declination of R, is

% = arctan{R,/(R} + R})"%} (89)
The relevant coefficients in equations (47)—(56) can now be written as
BO=C|=C3=D]=D3=O (90)

B, = —sin A o1
C, = —sin ¥ (92)
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FIG. 8. Geometry of a Box-Like Satellite Configuration.

D, = —sin ¥ sin A 93)
D, = cos ycos A (94)
D, = cos ¥ sin A (95)

On the basis of equations (58)—(61) and (88), and the results of Table 1 for y = 7/2,
as given in equations (73)—(75), the total torque can be written as

1
Maverage = —pvaR[/(2'rr){sin illico + ¢(mw/4) sin A + ?(2c2 + ¢;) sin? )t]

— c5(m/8) cos ¥ sin(ZA)}yo (96)

It may be mentioned that a torque component along the X, or z, direction can only arise
if B # B, cf. equations (47)—(56) and (58)—(61). In this case the projection of R, and
n of a given surface area into the satellite’s equatorial plane would not be aligned.

Finally, it may be noted that in the case of a rectangular top or bottom surface the
same result as in equation (87) for a circular area can be reestablished.

Regular Box-Like Configuration

The results established above are useful in establishing the total torque acting on a
regular box-like satellite as shown in Fig. 8. The side-surfaces have pairwise equal
areas A, and A, with the four centers R, = (*R,,0,R,) and R, = = (0, *R,,R.),
respectively. In the case when A < /2 a torque will also be generated by the top
surface with area A, and center R, = (0,0,R). If A > r /2 the bottom surface with
R, = (0,0, —R,) will have a contribution. Note that R,, R, and R, are defined as
positive distances, but R, will be negative when the center of mass would lie above the
geometric centers of the sidesurfaces, cf. Fig. 8. The corresponding declinations of
the five relevant surfaces are

yo= xm/2  (for A S m/2) (97)
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¥i = arctan(R,/R,) (98)
arctan(R,/R,) (99)

Yy

By adding the contributions of the four surface areas pairwise using equation (96) as
well as that of the top or bottom surface as given in equation (87), the total torque can
readily be established

1
Maverage = —pvz{(Al + Az) (RZ/TT) [Co + C|(7T/4) sin A + ?(2(‘2 + C3) Sinz )\:I

1
- §'(A1RX + AzRy - 2AOR0)C3 Sln(2)\)}y0 (100)

The sign of /2 — A defines whether R, designates the distance to the top or bottom
surface area.

Concluding Remarks

An approximate model for free-molecular flow effects on a satellite surface area has
been developed. The model is particularly aimed at applications related to spinning
satellites in geostationary transfer orbit with perigee altitude near 200 km. The resulting
torque on an arbitrarily oriented surface area has been established by first integrat-
ing the contribution of an infinitesimal surface element over the relevant part of one
spin revolution. Subsequently, an integration over the total surface area is performed.
The expressions obtained should be useful for calculating the torque expressions of
fairly elaborate spacecraft structures. Results are given in explicit form for two simple
geometrical satellite configurations of cylindrical and box-like shapes.

The formulation reported here was recently applied in an analysis of actually
observed attitude variations of the MARECS-A satellite during its three perigee
passages in geostationary transfer orbit, cf. Van der Ha [7].
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