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Abstract--Approximate analytical solutions are established for the attitude rates and angles of a rigid body 
subjected to a constant body-fixed torque. The perturbation solutions obtained are valid for any arbitrary inertia 
parameters. The small parameter is defined as the ratio between representative transverse rotation rate and the 
spin or scan rate. The results should be useful for quickly evaluating the attitude response of a spin-stabilised 
or scanning spacecraft to a variety of torque inputs. The applicability of the theory is illustrated by means of 
practical examples such as the spin-down due to rate coupling of ESA's GEOS spacecraft and the prediction 
of the attitude drift of the HIPPARCOS satellite during payload initialisation. Furthermore, the compact first- 
order results should be suitable for implementation in on-board manoeuvre or attitude control software. 

1. INTRODUCTION 

The attitude evolution of a spacecraft under various torques 
has been studied extensively over the past few decades. 
Usually a great deal of numerical simulations are required 
until the attitude response and control characteristics are 
understood in sufficient detail. Analytical models can be 
of great help in obtaining a qualitative understanding of 
the dynamical features involved. In the case of axisym- 
metric spinning satellites a fairly complete theory exists, 
at least for constant body-fixed torque components. The 
internal ESA report of Janssens[1] gives a good practical 
survey on the results available. 

The classical literature (i.e. before the advent of ar- 
tificial satellites) contains many special cases of rigid 
body motion which unfortunately are hardly ever directly 
applicable to practical satellite problems. From an his- 
torical point of view the book by Leimanis[2] and the 
papers by Grammell3] are of interest. 

In the near future, on-board capabilities with regard to 
attitude control autonomy are expected to evolve rapidly. 
The on-board autonomy would benefit considerably from 
the availability of compact analytical models for attitude 
evolution under various torques. As an important step in 
this direction Longuski[4] presented an analytical model 
for the attitude evolution of a near-symmetric spacecraft 
under a constant body-fixed thrust. The results are shown 
to be of interest for autonomous manoeuvering of the 
GALILEO spacecraft. 

The present paper aims at providing compact repre- 
sentations for the attitude evolution of spacecraft with 
arbitrary inertia parameters under constant body-fixed 
torques, Apart from being of interest for future on-board 
attitude control implementation and manoeuvre planning 
the models are also useful for more traditional simulation 
and evaluation tasks. 

The analysis makes use of perturbation theory which 
has found widespread application in orbit motion studies 
but for no obvious reason has never had a similar impact 
on attitude dynamics problems. As practically all satel- 
lites have one designated spin or scan axis it appears 
natural to take the ratio of a representative transverse 
rotation rate and the spin or scan rate as the small per- 
turbation parameter. This condition can be shown to be 
roughly equivalent to attitude motion with a small nu- 
ration angle. 

The analytical results are illustrated to two actual ap- 
plications. First, the little-known spin-down effect in- 
duced by rate coupling during axial thrust is derived from 
the theory. This spin-down can well have catastrophic 
consequences as was vividly demonstrated by the GEOS 
dynamic experiment[5]. The second application concerns 
the attitude drift prediction of ESA's astrometry satellite 
HIPPARCOS during its initialisation phase. This slowly 
scanning satellite is perturbed by a torque due to a gyro 
reaction to the imposed scanning. The attitude drift pre- 
diction is of vital importance for assessing the feasibility 
of the separation of the star patterns observed in the two 
telescopes combined fields of view. This in turn is nec- 
essary for obtaining full three-axis attitude knowledge. 

2. ATTITUDE RATE EVOLUTION UNDER CONSTANT 
BODY-FIXED TORQUE 

2.1 Equations o f  attitude rate evolution 

A body-fixed principal coordinate frame x, y, z is in- 
troduced such that the z-axis points along the positive 
spin axis direction (or along the axis with largest nominal 
rotation rate in the case of scanning motion). The equa- 
torial principal axes are oriented such that the moment 
of inertia I, is larger than I, or arbitrary if they are equal. 

The inertia parameters: 

tPaper presented at 35th Congress of the International As- 
tronautical Federation, Lausanne, Switzerland, 8-13 October 
1984. 
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k~ = ( 1 = -  L ) / I , ;  k~ = (L  - L ) / L ;  

k_ = ( I , -  L ) / L  ( l)  

are introduced. It can be seen that both k~ and k~ are 
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positive in the case that z is the major axis of  inertia and 
that both are negative if z is the minor inertia axis. It 
may be recalled that spin around an intermediate axis of  
inertia is not physically possible. By virtue of  definition 
k_ is nonnegative.  

Euler 's  equations of  attitude motion describe the ev- 
olution of  the angular body rates m,, to,, to  under general 
torque components  Y , ,  T ,  i v : 

&, + k,to:m, - T ~ / I , ,  

eb, - k,to:m, = T , / 1 , ,  

J. C. VAN DER HA 

Finally, it appears advantageous to introduce a nevx 
time scale v which is proportional to the total rotation 
angle about the instantaneous z-axis: 

(2) 

T(t) = KI~ /,:." z(bt) db~. {~) 

Equations (6) expressed in terms of  'r as independent 
variable can now be written compactly as (' refers to 
derivatives with respect to -r): 

do + k:oa,o~, - T j L .  

In the present analysis, it will be assumed that the torque 
components  are piecewise constant,  i.e. the time period 
of  interest can be broken up in a finite number of  intervals 
over which each of  the components  T,, 7,,  7'_. have par- 
ticular constant values. Thus, also pulsed thrust ma- 
noeuvres are included. An important parameter which is 
directly related to the spin or scan rate m is the nutation 
frequency m,: 

co,, - Keo:;  K = ( k , k , )  ~ :. ( 3 )  

In addition, the asymmetry ratio k is introduced: 

k - ( k , / k , )  1~. (4) 

Due to the fact that z is either the major or the minor 
inertia axis both the parameters K and k are well-defined 
real quantities for any physically meaningful application. 

Further simplification of  eqns (2) will be achieved after 
introduction of  the nondimensional  rotation rates: 

x = t o J ( ~ / , ~ ) ;  y = 0o, X/k/~o: z to_/~. (5) 

Here, ~] and ~o arc scaling constants selected to be rep- 

resentative for the spin and transverse rotation compo- 
nents, respectively. For instance, one may take II - 
to:(0) and eo = ]to,(0) + ito>(0) I if it is nonzero; otherwise,  

the latter may be taken to be a representative value for 
the expected transverse rotation rate. Equations (2) ex- 
pressed in terms of  the variables x, y and z take the form: 

5: = T , / ( l , ~ / k )  - ( k , / k ) ~ y z ,  

9 = T , V ' - k / ( l , t o )  + k , k ~ x z ,  (6) 

= T : / ( L D )  - k:to=xy/fL 

With the aid of  the definitions in (3) and (4) one can 

reduce: 

f + K ,  i f l  is major, 
k , / k  = k , k  = { 

( - K ,  if / is minor. 
(7) 

x ' ( ' r )  = { / z  + 3'; y'(-r) - "q/z  +- x:  

z ' ( ' r )  - (a  - h v y ) / z .  

(9) 

The upper (lower) signs refer to the case where 1= rep- 
resents the major (minor) moment  of  inertia. The con- 
stants introduced in eqns (9) are defined as: 

~. T , / ( K l , ~ b x ¢ / k ) ;  

"q = T,  x e / k ' / ( K l , ~ l m ) :  (10) 

a = I V = / ( K I ~ F ) :  

b = k m ' - / ( K I F ) .  

The advantage of  eqns (9) over the original Euler equa- 
tions lies in the fact that they are more immediately ame- 
nable to a perturbation analysis since only the relative 
magnitudes of  the four constants in eqns (10) need to be 
analysed for identifying a suitable perturbation parame- 
ter. Nevertheless,  the system in eqns (9) is still intricately 
coupled and does not possess any known closed-form 

solution in the general case. 
The constants ~ and "q may in general be regarded to 

be of  a similar magnitude,  whereas for spin-stabilised 
spacecraft (i.e. ~), >> ~o) the constants a and h arc. re- 
spectively, one and two orders of magnitude (~/~1) smaller. 
On the basis of  a consistent scaling policy one may thus 

write: 

a - e~, b e:K, (11) 

with 

- T : / ( K l : l ~ t o ) :  K -- k _ / K .  (12) 

The small perturbation parameter e appearing here equals 
the ratio of  transverse and spin rotation rates ~ / t L  

For brevity, one may condense the first two equations 
in (9) by introducing the complex variable u = .x + ix, 
with i the imaginary unit: 

u ' ( ' r )  = c / z  + iu( 'r) ,  c ~ + ?q.  (13) 

Therefore,  eqns (6) take on different forms depending on 
whether the major or minor inertia axis is the designated 
spin or scan axis. 

The + ,  - signs refer to rotation about major, minor z- 
axis. The term x y  appearing in the equation for z can be 
expressed as the imaginary part of  u~-/2. Altogether,  the 
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fol lowing extremely compact  set of  equations has been 
established: 

u'( ,r)  = c / z  +- iu(,r), 

z ' ( ' r )  = ~[~ - ~K l m  (U2)/2]/Z, 

t '( 'r) = l / ( K l ~ z ) .  

(14) 

The t ime equation is necessary to keep track of the be- 
haviour  of the solution as a function of  time: this can be 
accompl ished for example  by inverting the perturbation 
solution t(-r) ei ther directly or iteratively. 

Torque-free motion is immediately recovered by put- 
ting c = ~ = 0 in eqns (14). For this special case well- 
known solutions to the Euler equations in the form of 
elliptic functions are given in the literature, e.g. Wertz[6],  
Section 16.2. 

In the sequel,  only the case where z is the major inertia 
axis will be treated. It is possible to obtain the solution 
for the alternative case by a simple direct t ransformation 
as presented in the Appendix.  

2.2 P e r t u r b a t i o n  so lu t i on  J o r  a n g u l a r  ra te s  

After the relative magni tudes  of the forcing terms have 
been settled a perturbat ion solution of the form: 

u(T) = u~,(T) + eu~(,r) + ~2u~(,r) + . . . .  

z(T) = 7.0(,r ) -]- ~:.Zl(,r ) -{- ~_2z2('r ) -~- . . . .  

t(,r) = to('r) + £ t l ( ' r )  + Ezt2('r) + . . . .  

(]5) 

is postulated. This is a so-called straightforward expan- 
sion (e.g. Nayfeh[7] ,  Ch. 2) with short- term validity. 
After substi tution of  this expansion into eqns (14) the 
zeroth-order  system is obtained: 

u~j(,r) = C/Zo + iuo, 

z;,(,r) = O, 

t[~('r) = l / (Kl~Zo) .  

(16) 

On the basis of  the initial condit ions uo(0) = U0 = 
Xo + iY~, z~(0) = 1 and to(0) = 0 one finds the solu- 
tions: 

uo(r)  = ( U o -  ic) e x p  (i'r) + ic ,  

zo('r) = 1, (17) 

t0('r) = , r / ( K ~ ) .  

The zeroth-order  solutions for the individual equatorial 
rotation components  xo(,r) and y0(,r) can readily be derived 
from Uo('r) and they satisfy the relationship: 

[so(,r) + ~12 + b'0(,r) - ~1~- = I u , , -  icl 2. (18) 

These  results show that the Uo vector describes a circular 
track within the body ' s  equatorial plane with center at 
- " q  + i~ = ic and radius ]Xo + "q + i(Yo - ~)1. In the 
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torque-free case this behaviour  is completely con- 
sistent with the wel l -known space and body cone model 
as described,  for instance,  by Kaplan[8] ,  Section 2.3. 
Note also that ,r = 2rr corresponds precisely to one nu- 
tation period as can be seen f rom the solution for to. The 
effect of  the (equatorial) torque components  consists ef- 
fectively of  a shift in the position of  the uo vector ' s  center 
of  rotation as well as in the radius of the circle described. 
This is related to the displacement  of the effective or 
mean angular  momen tum position over  one spin period 
under  the action of  a cont inuous torque. Only in the case 
when the initial condit ions and torque components  are 
such that Xo = - "q and Yo = ~ the rotation vector would 
be fixed in the body frame (at least up to the present level 
of  approximation) .  

The first-order system of  equations is as follows: 

ui(,r) = - c z ,  + iu~, 

t[(,r) = - z , / ( K I ~ ) .  

(19) 

Since now all initial condit ions vanish the corresponding 
solutions can be expressed as: 

u~('r) = c~[exp (i,r) - 1 - i-r], 

z,(,r) -- ~,r, 

t,(,r) = - ~,r2/(2Kf~). 

(20) 

By expanding u~('r) in its real and imaginary parts the 
rate components  x~('r) and yff'r) can be obtained. 

By the nature of the perturbation expansion the dy- 
namical  effects have been separated such that the equa- 
torial torque components  produce a zeroth-order effect, 
whereas  the spin torque component  exhibits  itself only 
in the first-order results. It is evident  that this is a con- 
sequence of  the dominance  of  the z-axis angular rate over  
the transverse rates. 

The geometrical  visualisation of the motion of the u = 
uo + eu~ vector is similar to that of u0 with the exception 
that its center  is now moving  slowly due to the additional 
term -~c~(1  + i'r) and has a slightly perturbed radius 
(term ~c D. 

The second-order  system is given by: 

u~(,r) = c(z~ - z2) + iu2, 

z~('r) = - K  lrn(uo) /2  - ~z l ,  

t~(r)  = (z~ - z 2 ) / ( K ~ ] ) .  

(21) 

In this case the solution is not so straightforward,  in 
particular due to the u~ term which is rather lengthy. It 
is possible to obtain a closed-form solution for z2(t) which 
can be writ ten in short-hand form as: 

z2(r)  = K ~ ~q • - 42 72/2  + FIT ) ,  (22) 
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with 

F('r) = a~ sin v + (a2 /2 )  sin (21") + 

+ b~(l - cos-r)  + b2[l - cos (2"r)//2, 

a ,  = - K  [~(X,, + ~ )  - ~(Y,,- ~)1, 

a 2 = --K (X 0 4- "q)(Y, - ~), 

b ,  - K [ { ( Y , ,  - { )  + ~l(X,, + 1 ] ) ] ,  

b~ = - K  [(X0 + "q)-~ - (Y,, - ~)2]/2. 

J. C. VAN DER HA 

by using the known entries of  the expansion lor t('O as 
given in eqns (17), (20) and (24): 

T.(t) = K ~ t ,  

"r,(t) - ~(K~t)2/ '2,  t29) 

(23) "re(t ) = F, ~ ~1 ( K i l t )  2/2 + G ( K I I t ) ,  

where the function G is defined in eqn (25). This result 
provides complete flexibility in transforming back and 
forth between results expressed in the angle v or time t. 

From this solution expressions for t2(T) and u2('r) can 
readily be obtained: 

t2(T ) = {~2 T~/2 K ~ "I"1 "r2/2 - G(~)}/(K[~), (24 )  

with 

GCr) = a~ (1 - cos q-) + a2[1 - cos (2a')]/4 + 

+ b,(~" - sin-r) + b212T - sin (2"r)]/4. (25) 

The solution for u2ffr) is given by: 

u2('r) = c{3 i ~2 ,r2/2 + (3 ~2 _ i K { -q)(,r - i) - 

- i(b~ + b2/2)  + [(b, + i a ] ) / 2 ] ' r  c o s ' r  - 

- [ ( a ,  - i b , ) / 2 ]  7 s i n ' r  + 

+ (A2 + i b j 2 ) c o s  "r + 
(26) 

+ i (A2 - a , / 2 )  sin -r + 

+ [(2 a2 - i b2) /6]  cos (2~r) + 

+ [(2 b2 + i a2)/6] sin (2-r)}, 

with integration constant: 

A2 = K ~ "q -- a2 /3  + 

+ i(3 {~ + b , / 2  + 2b_,/3). (27) 

The rate components  x2('r) and y2('/') c a n  be derived from 

this result, cf. Van der Ha[9], eqns (46). 
This completes  the second-order  straightforward per- 

turbation solutions for the attitude rates. It is well known[7] 
that the validity of  this approximate result is limited (in 
the present case over the interval from 0 to 'r ~ I/~). By 
repeated rectification or updating of  the results after a 
properly selected interval (e.g. "r - k 2'n with integer k) 
the validity of  the asymptotic solutions can be extended 
over practically any desired duration. 

2.3 Invers ion  o f  t ime equa t ion  
In order to obtain explicit expressions in terms of  time 

the function t(-~) as established above must be inverted. 
Assuming a perturbation expansion for -r(t) of the form 

"r(t) - To(t) + ~. %(1) 4- ~_" vl(t) + . . . .  (28) 

one can iteratively solve for the terms % ( t ) , j  = 0, I. 2 

3. ATTITUDE ANGLE EVOLUTION UNDER CONSTANT 
B O D Y - F I X E D  TORQUE 

3. I E q u a t i o n s  o f  ang le  evo lu t ion  in iner t ia l , / rame  

The attitude evolution itself can be derived from the 
integration of  the results obtained for the rotation rates. 
A formulation in terms of  the so-called Euler parameters 
is particularly convenient  for this purpose as it avoids the 
singularities inherent in the conventional Euler angles. 

These parameters are usually defined by means of  the 
instantaneous Euler rotation axis e and the corresponding 
rotation angle W [cf. Morton et  a/.[10], eqns (3)]: 

, sin (W/2) / 

= sin ( W / 2 ) ]  (30) 

\ e ,  sin ( W / 2 ) /  

The relationships between Euler parameters and conven- 
tional direction cosine elements are well known[ III and 
allow to express the Euler parameters in terms of  the 

Euler angles 4), 0, + (in a 3 - 1 - 3  rotation sequence): 

- cos (0/2) cos [(Cb + +)/2] .  

[3 = sin (0/2) cos l(~b - +)/21, 

y - sin (0/2) sin 1(+ - +)/21, 

8 - cos ( 0 / 2 ) s i n  [(d) + +)/2] .  

(31) 

The inverse relationships are: 

~b = arctan (8/~)  + arctan (y/[3) ,  

0 = arccos led + 8~- [3-' Y~-I, (32) 

+ = arctan (8/c~) - arctan (7/13). 

These equations are important in order to set up the initial 
conditions for the Euler parameters and for transforming 
the results back in terms of  Euler angles for better vis- 
ualisation after the integration has been carried out. 

The rates of  change of  the Euler parameters arc given 

by the matrix equation[ 10J. 

= " . (33) 
- t o  0 to, 

to, -co ,  0 
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This system can be condensed significantly by employing 
the complex combinations of Euler parameters (similar 
to Cayley-Klein parameters): 

p = a + ip, u = y + i6, (34) 

with corresponding system of equations: 

After expressing the rotation rates in terms of the non- 

dimensional variables introduced in eqns (5) and taking 
7 of eqn (8) as independent variable one obtains: 

with w = 1/(2K). This represents the fundamental 
tern of equations to be formally integrated. 

(36) 

sys- 

3.2 Perturbation solution for Euler parameters 

Employing a straightforward perturbation expansion 
for P(T) and U(T) similar to the ones in eqns (I 5) one is 
immediately led to the zeroth-order system of equations 
by dropping the E term in eqns (36). Its solution is written 
as: 

with A, = a(0) + ip(0) and B,, = y(O) + i 6(O). The 
torques have thus no effect on the attitude angles in the 
zeroth-order terms. The first-order system can be ex- 
pressed in the form: 

The solutions of eqn (38) with vanishing initial conditions 

follow from the variation-of-parameter formula: 

P,(T) = 
I 

i {FI(CL) cos [W(T - p.)] + 

1 i G,(p) sin 14~ - c~)I}dt~. (40) 

U,(T) = 
i 

T {iF,(F) sin [W(T - FL)] + 
0 

+ G,(p) COS [W(T - k)l}&. 

After substitution of the zeroth-order results x,), .v,,, p0 
and u0 from eqns (17) and (37) into eqns (39) and (40) 
the following form for the solution can be established: 

p,(T) = C’COS (W+T) - cm COS (W-7) + 

+ S’ sin (w+T) + S-sin (w-7) - 

- D COS (WT) + (T - s) Sin (WT), 

U,(T) = is’ COS (W+T) + if COS (W-T) - 
(41) 

- i C’ sin (w+T) + i Cm sin (W 7) - 

- i T cos (WT) - i(c + D) Sin (WT). 

The frequencies w’ denote w ? 1 and the constants 
appearing here are defined as: 

Cf = CFi(2w 2 I); 

si = Sfi(2w +- I); 

C = (i 5 A,, - k q B,,)igi; 

S = (i k q A,, + 5 B,)ld; 

D=C’- 
T = s + E:; + 

(42) 

with 

CF = w(k + I){i A,(Y,, - 5) ? 

* B,(X” + r1)}/(2G); 

ST = w(k + l){i A,(X, + 7) i 

T B,l(Y,, - 5M24). 

(43) 

It may be noted that the equatorial torque components 
appear in this first-level of approximation. The axial torque 
component will enter the second-order solution via the 
first-order rate solution. 

The second-order system for P?(T) and U?(T) takes the 
same form as in eqn (38) with considerably more com- 
plicated forcing terms: 

The solutions can also formally be written in the form 
of eqns (40). In fact, explicit expressions have been es- 

with 
tablished in terms of some 20 different integrals. These 
solutions are extremely lengthy and have been spelled 

ik x0 pO - Y, co 

(i:) = % (JJ,, p0 - ikx, u,,)’ 

out in an internal ESA report (Van der Ha[9]). For reasons 

(39) 
of brevity they are omitted here. In many practical cases 
(especially when < = 0) the first-order results would 
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already be sufficiently accurate so that the elaborate cod- 
ing of the second-order angular evolution may be avoided. 
In this connection it may be mentioned that the accuracy 
of the solutions can readily be enhanced by a rectification 
of the results at regular intervals. 

4. APPLICATIONS OF THE THEORY 

The approximate solutions for the attitude motion es- 
tablished above are of considerable practical importance 
as they allow a quick evaluation of a spacecraft's attitude 
response to a variety of disturbing and/or control torques. 
Of particular importance is the fact that the theory is not 
restricted to symmetric rigid bodies but includes the 
asymmetry effect through the K terms without approxi- 
mation. This so-called "'self-excited asymmet,ic rigid 
body" problem has received relatively little attention in 
the literature so far. Nevertheless. it pnsscsscs unique 
dynamic characteristics whose understanding is vital lor 
sale satellite manoeuvre operations as will be illustrated 
below. 

4.1 Application to spin-stabil ised spacecrq[i 
When ESA's spin-stabilised satellite GEOS-1 was to 

undergo a 45 rain orbit manoeuvre by means of an axial 
thruster burn in may 1979 there appeared to exist little 
reason for concern. In fact, a similar manoeuvre of 3 min 
duration had already successfully been performed two 
years earlier. ] 'here were however two apparent differ 
ences between the conditions surrounding these two ma- 
noeuvres. One of these was thought to be important, namely 

the fact that in the meantime the 20 m radial wire booms 
had been deployed. The other difference concerned the 
spin rate which was only 11 rpm compared to 96 rpm 
prior to the first manoeuvre. It could not a priori  be 
excluded that spin rate variations would induce boom 
oscillations. In order to analyse the effect on the booms 
a computer simulation based on the best available non- 
linear model was carried out. Contrary to the outcome 
of a simpler linear model the simulations predicted a 
complete despin (and loss of the satellite due to boom 
slackness) after,just 5 min! When these predictions were 
analysed in more detail it became clear that the nonlinear 
rate coupling effect inherent in the Euler equations in 
conjunction with the comparatively low spin rate rather 
than any boom dynamics was responsible for the despin. 
A subsequent verification manoeuvre of small duration 
confirmed the correctness of the quantitative predictions. 
A first-hand account of this narrow-escape satellite saga 
is given by Boland and Janssens[5]. 

The rate coupling effect referred to here may introduce 
a spin-up or -down duc to the net cunmlative effect of 
the forcing term - k  m, u~, in the third Euler equation 
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[eqns (2)]. This is seen explicitly in cqn (22) which in 
the absence of the axial torque component and apart from 
periodic terms can be expressed as z, - K E "q 'r. On the 
basis of the definition of the symbols given in cqus (51, 
(10) and (12) along with the expansion OfT in terms oI 
t given in eqns (29) this result can be rcwritlcn in the 
original dynamical parameters as: 

& o : ( t 7  - 
(/, 1,7 T, 7", ; 

(1: - 1 , ) ( I  - 1 , ) 1 ~ "  

- , I  T, T, t / ~ F ,  /45) 

with inertia parameter J defined by this equation, This 
expression is consistent at least in the case of a small 
spin change with a formula given in [5], eqn ( 197, which 
was derived on the basis of energy considerations. The 
nonintuitive change in spin rate is brought about by the 
fact that {in average over a nutation cycle) the equatorial 
torque vector has a nonvanishing component ahmg the 
angular momentum vector thereby changing its magni- 
tude. Equation (457 indicates that no spin change occurs 
lk~r a symmetrical satellite (1, - / ,) or if either "1'. or 7 
vanishes, i.e. when the axial thruster is positioned on 
one of the principal axes. 

In the case of GEOS-I the lower axial thruster is lo- 
cated 0.725 m away from the spin axis at 4(7 ° flom the 
principal x-axis. It was expected to produce a 7 N thrust 
lk)r the orbit manoeuvre under consideration. The inertia 
parameter J in eqns (45) amounts to 8.914 × 10 ~ (kgm ~) 
where the contributions of the wire booms have been 
incorporated in the way proposed in eqn (287 of [51. l 'ablc 
1 provides the comparison of the predicted and actually 
observed spin-downs during the two verification ma- 
noeuvres. The last two columns arc reproduced from [5]. 
It is seen that the agreement of the models with the 

observations is extremely good. 
Other spin-stabilised ESA spacecraft which may bc 

subjected to the same phenomenon are the METEOSAT- 
I and 2 satellites. Since, however, their operational spin 
rate is around 100 rpm it is evident from eqn (45) that 
the rate coupling effect is much less pronounced than in 
the case of GEOS. Using typical inertia values one finds 
a value fl)r the inertia parameter J in eqn (457 of the order 
of 10 ~ (kgm') ~. For typical thrust levels this results in 
a spin-down of only 0,03 0.08 rpm per minute of thrust 
(for the nominal axial - I  thruster: the backup thruster 
would produce a similar spin-apT. The spin-down due to 
.jet damping (caused by fuel displacement to thruster lo- 
cation) can be shown to be of a magnitude already three 
times larger. In fact, thrust nfisalignments also introduce 
larger spin changes. Therefore, it can bc concluded that 
thc coupling effect has comparatively minor implications 
for this class of fast-spinning satellites. 

Table I, Summary of observed and predicted spin-downs during GEt)S- 1 
verification manoeuvres 

• manoeuvre duration i n i t i a l  actual __ predicted k~z  !rpm) _ ~ v (sec) spin(rpm) k~z(rpm) i Eq.(45) I computedTanalytica 1 
1 8z 10.97 L0.61 -0.67 -0.6t i 7 7 . 7 7 - - -  
2 181 11.00 I H,___i . . . . . . . . . . . . .  - I  47 ! - 1 . 4 7  i - 1 . 5 0  I - 1 . 7 3  
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4.2 Application to HIPPARCOS attitude motion 

The perturbation solutions presented here have also 
shown to be extremely valuable in predicting the attitude 
drift motion of a slowly scanning asymmetric rigid body 
under a body-fixed perturbing torque. The application at 
hand concerns ESA's astrometry satellite HIPPARCOS 
which is foreseen to be launched in 1988. Its scan axis 
is normal to the plane formed by two telescope arms 
which are separated by a 58 ° basic angle. The nominal 
scan rate is extremely slow: co_ = 168.75 deg/h. Stars 
appearing in each of the two telescopes fields of views 
are projected in one common tbcal plane by means of a 
beam combining mirror. The close proximity (within the 
payload) of stars which are actually separated by about 
58 ° on the celestial sphere is essential for achieving the 
milli-arcsec level astrometric accuracies by an elaborate 
data processing of all measurements. A general overview 
on the HIPPARCOS mission's principles and objectives 
can be found in Scbuyer[12]. An account with emphasis 
on attitude control aspects is given by Vilain and Har- 
ris[ 13], 

During the initialisation of its payload the satellite's 
scan axis is roughly pointing in the direction to the Sun. 
The scan rate is kept close to its nominal value by a 
control loop incorporating a z-axis gyro rate sensor and 
torques provided by the cold gas reaction control system, 
The dominant perturbing torque in this configuration is 
due to the z-axis gyro's reaction to the imposed scan 
motion. It may be recalled that a gyro having its input 
axis along the z-axis must have its angular momentum 
vector somewhere in the equatorial plane with the con- 
sequence that the imposed scan precession about the z- 

axis will generate a reaction torque normal to both angular 
momentum and z-axis direction. This body-fixed torque 
vector lies in the satellite's equatorial plane and has a 
magnitude of 11 micro-Newton in the present application. 
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In order to establish complete three-axis knowledge of 
the spacecraft's orientation the inertial pointing directions 
of the telescopes will be determined by analysing the star 
patterns observed in the payload's Star Mapper. The rec- 
ognition of these patterns is considerably complicated by 
the fact that stars from both field of view directions are 
crossing the 40 arcmin wide Star Mapper slits. The first 
task in the recognition process would therefore consist 
of a separation of the observed star patterns according to 
their fields of view. This may be accomplished by a 
careful comparison of two patterns separated by a time 
interval of 20.6 rain corresponding to the basic angle 
scan of 58 °. On the basis of the assumption that there 
exists a reasonable overlap between the scanned strips 
over this time interval it should be feasible to distinguish 
that part of the star pattern which is completely identical 
in the two compared patterns: these common stars must 
belong to the "fol lowing" field of view of the most recent 
observation and to the "preceding" direction 20.6 min 
earlier. The remaining stars in the common strip would 
then belong to the respective alternative fields of view. 
A detailed account on the feasibility of the star pattern 
recognition briefly discussed here is provided in an in- 
ternal ESA report114]. 

From the considerations raised above it is evident that 
the extent of the overlap region after a 20.6 rain basic 
angle scan should be made as large as possible in order 
to facilitate the star pattern separation task. Since the 
direction of the gyro reaction torque within the equatorial 
plane can be selected at will there is room for optimi- 
sation. Thus, a parametric search for the optimal torque 
direction has been carried out using the results of the 
theory presented above. As HIPPARCOS is scanning 
along its minor inertia axis the transformation outlined 
in the Appendix was necessary. The perturbation solu- 
tions up to first-order terms as well as a RUKUT 4 nu- 

scan axis at 

t l  , to 

z_ 1 --o 

satel I i te 
/ 

center of mass 1 ~ - m ~ -  . . . . . . .  / 

scan plane 

at tz 

scan plane 

at  to 

Fig. 1. Visualisation of shift A between preceding field of view at t~ and following field of view at tL. 



868 J. C. VAN D|R H.', 

Table 2. Summary of shift in field of view directions A in arcmin for torque 
directions between 30 ° and 20 ° 

i n i t i a l  ] 
Wy torque d i r e c t i o n  ~ in equator ia l  plane 

W x 

(deg/hr)  -30 ° =20" -10 ° 0 ° 10 ° 20: 

0 0 26 15 2 -10 -22 -33 
2 1 8 -3 -16 -28 -40 -51 

-2 1 4 -7 -20 -32 -44 -55 
2 - I  48 36 24 12 0 -11 

-2 - I  44 32 20 8 -4 -15 

merical integration routine were coded in Basic on a 16K 
homecomputer .  The results indicated acceptable agree- 
ment, i.e. 5 - 7  common digits for the rates and 3 - 5  for 
the Euler parameters over the basic angle interval. An 
additional comparison with a different analytical pertur- 
bation solution confirmed the validity. The analytical 

solution was about 5 times faster in CPU time than the 
numerical. 

Finally, the field of  view shift after one basic angle 
scan will be analysed. The bisector o f  the two field of  
view directions is taken as the x-axis of  the body-fixed 

reference frame. For convenience the inertial frame is 
thought to be aligned with the body frame at time t = 

0. The initial Euler parameters are therefore o~(0) - l; 
[3(0) : 'y(0) = 6(0) - 0. After an interval of  t~ = 20.6 
rain corresponding to the basic angle scan the prevalent 
Euler parameters cx( l ) -8( l )  are provided by the pertur- 
bation solutions above. The corresponding Euler angles 
6(1) ,  0(1) and +(1) can be calculated from eqns (32). 
The shift in pointing direction of  the following telescope 
at t l ,  i.e. f ( l ) ,  relative to that o f  the preceding field of  
view direction at to, i.e. p(0),  is given by (cf. Fig. l): 

A ~ sin 0(1) sin [+(1) - 29 °] = (46) 

= 2 {c([3~ - ,xy) - s loll3 + yS)},:,,, 

w h e r e c  = cos (29 ° ) a n d s  = sin (29°). (Note that 29 ° 

is half of  basic angle.) 
The results of  6 different torque directions c~ between 
30 ° and 20 ° are summarised in Table 2. The first mw 

refers to the case where the initial pointing is completely 
at rest, whereas the other four rows represent worst-case 
initial rates. (These initial conditions correspond to the 
residual deadband motion remaining after switch-off  of  
the Sun-pointing control loop.) When applying equal 

weights to each of  the 5 cases presented in "Fable 2 one 
finds that the overall optimal value of  c~ is around - 8 °. 
The corresponding worst-case shift in field of  view would 
be about 22 arcmin so that the remaining overlap is ex- 
pected to be slightly less than half of  the 40 arcmin wide 
Star Mapper  slits. This is expected to be adequate for a 
successful star pattern separation. 

5. CONCLUDING REMARKS 

Perturbation solutions for the attitude rates and angles 
have been established for a rigid body with arbitrary 
inertia parameters subjected to constant body-fixed torque 

components .  The perturbation expansions have been car- 
ried up to second-order  in terms of  a small parameter 
designating the ratio between a representative transverse 

rotation rate and spin or scan rate. This condition essen- 
tially amounts to a small nutation angle so that the results 
should be useful for any application where one axis ex- 
hibits a clearly dominant  rotation rate. The attitude angles 
can be derived from a set of  redundant Euler parameters 
which are not hampered by the singularities inherent in 

a tbrmulation in terms of  conventional Euler angles. 
The approximate analytical solutions derived here should 

have wide practical applicability as they allow a quick 
evaluation of  a satelli te 's attitude response to a variety 
of  disturbing or control torques. It has been shown that 
the results are capable of  correctly predicting the intricate 
dynamics of  asymmetric spin-stabilised spacecraft.  The 
potentially disastrous rate coupling effect on the GEOS 
spacecraft should have taught us clearly that rigid-body 
dynamics may still have a tEw more secrets in store for 
us. Simple but realistic analytical models could be ex- 
tremely useful for discovering and understanding these 

dynamical surprises. 
Furthermore, it has been shown that already the first- 

order perturbation results ( implemented on a homccom- 
purer) are able to predict the HIPPARCOS attitude drift 

under a gyro-induced disturbance torque to sufficient ac- 
curacy. In this application the nominal scan rate is only 

168.75 deg/h .  
As lor future applications it appears that realistic com- 

pact analytical expressions modelling the attitude evo 

lution should become important in onboard attitude con 
trol software, e.g. calculation of  planned manoeuvre e fleets 
or control loop adaptation on the basis of  observed dis- 

turbance torques. 
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APPENDIX: SPIN OR SCAN ABOUT MINOR 

INERTIA AXIS 

The mathematical formulation presented above was based on 
the assumption that the designated spin or scan axis (i.e. z-axis) 
is the major axis of  inertia. In the alternative case when the z- 
axis represents the minor-axis of inertia the lower signs in eqns 
(9) and (14) must be taken and the corresponding perturbation 
solution will be different from the one given. 

It is possible, however, to immediately transform the solution 
presented above to the one valid for the case of rotation around 
the minor axis. Thereto one makes the substitution: 

_f' = - Y ; ~1 = -'11; b = - b , (AI) 

This change of variables transforms one system of eqns (9) into 
the other and allows to employ the given solutions also for the 
minor axis rotation after incorporating the appropriate sign changes. 
The transformation of eqn (A1) can be accommodated in eqns 
(14) by replacing K by -9~; u by ~ = x + i37 = x - iy and c 
by ~ = ~ - i'q. The initial condition for y appearing implicitly 
(in U~,) must be transformed in the same manner. By this change 
of variables the validity of the given solutions can thus quickly 
be extended also to this important alternative case. 


