Non-Singular and Non-Gonventional Orbit Perturbation Equations

Jozef C.VAN DER HA, ESOC, Darmstadt*)

Summary: A few attractive systems of equations describing perturbed orbital motion are derived from first principles. These
equations are particularly useful for near-circular and near-equatorial satellite orbits where the classical perturbation equations
exhibit singularities. Instrumental in the derivation of the results is the use of a quasi-angle defined by a differential relation.
This leads to a natural decoupling of in-plane and out-of-plane perturbing effects and to relatively compact expressions.
Finally, a few convenient non-conventional orbital elements which have a non-vanishing rate of change in the absence of
perturbations are presented.

Nichtsingulire und nichtkonventionelle Storungsgleichungen in der Bahnmechanik

Ubersicht: Es werden einige neue Beschreibungen von beliebig gestorten Satellitenbahnen mitgeteilt. Diese sind fiir Bahnen
mit geringer Exzentrizitét und Bahnneigung von praktischer Bedeutung. In diesen Fillen werden die klassischen Differential-
gleichungen aufgrund von Singularititen unbrauchbar. Die Ergebnisse werden durch die Entkopplung von Storungseffekten,
welche auf die Bahninklination einwirken, und solche, die nur innerhalb dieser Ebene wirksam sind, abgeleitet. Aufierdem
werden nichtkonventionelle Bahnelemente eingefiihrt, die dadurch gekennzeichnet sind, daf sie sich dauernd als Funktion
der Zeit dndern, auch wenn alle Storungskrifte aufler acht gelassen werden.

1. Introduction

The well-known classical Lagrange’s Planetary Equations
[1] describe the rate of change of a set of orbital elements
under a combination of arbitrary perturbing forces. In the
conventional terminology the orbital elements would
become constants if the perturbing forces were to vanish:
such variables may be called slow orbital elements. On

the other hand, there also exist orbital elements with a non-
vanishing rate of change in the absence of perturbations,
e.g. the mean and true anomalies. These variables are
designated as fast elements. It is evident that in the
numerical integration of the set of first-order differential
equations for the variation of the elements, a fast variable
would generally require a much smaller step size than the
one needed for a slow element, if consistent accuracies are
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desired. The ratio of the stepsizes would be ¢ to 1, where ¢
denotes the order of magnitude of the perturbing forces
after proper nondimensionalization. This observation does
not imply. however. that fast orbital elements are in all
cascs to be disregarded as possible candidates for describ-
ing perturbed orbital motion. In the present paper a few
situations are discussed where fast orbital clements can be
employed without adverse consequences on the step size in
the numerical integration process. The usefulness of fast
elements is based on the following considerations:

1. Any arbitrary fast orbital element defines a correspond-
ing slow variable if its unperturbed Keplerian contribu-
tion is simplv subtracted. These so-called slow
difference-elements would vanish identically in
the case of unperturbed motion.

39

In particular cases. a normally fast element may be con-
sidered as a slow variable. If. for example. the eccen-
tricity ¢ can be proven to remain of the same order of
smallness as the perturbation parameter ¢ throughout
the time-interval of interest. the rate of change of the
fast element e cos ¥} (where @ is the “fast™ true anomaly)
would etfectively be a slow element in the sense that its
rate of change is of similar magnitude as that of a con-
ventional slow element. Tt should be keptin mind. how-
ever. thate cos #is not slow in the sense that it would
become a constant in the absence of perturbations.
Therefore. such an element will be called quasi-slow.
where it must be recognized that the slowness holds
only for particular initial conditions and for particular
perturbing forces.

The objective of investigating these quasi-slow orbital ele-
ments is to arrive at more convenient representations for
the well-known Lagrange Planetary Equations describing
the variation of the classical orbital clements a, e, w, i, 2
and T. The Gauss formulation. in particular, where the per-
turbing forces arc expanded in three local components
along radial. transverse and orbit-normal directions results
in quite awkward equations which do not readily admit an
analvtical approach for anyv non-trivial application. In
numerical integration the advantage of a more compact set
of equations in terms of non-conventional elements would
lie in a faster exccution time. It mayv be mentioned that
although a canonical set of perturbation equations would
be more compact than any other sct a price in terms of fairly
elaborate transformations for the actual physical perturb-
ing forces into canonical forces must be paid for this con-
venience [2]. Compactness and easc of application of the
equations as well as the complexity of the perturbing force
expressions therefore play a role in assessing the suitability
of a particular formulation. Tt should also be emphasized
that different applications may lcad to different preferred
forms.

The ideas presented in this paper has been suggested by
investigations related to the selection of a suitable formula-
tion for relative motion problems [3]. The use of a pseudo-
angle v defincd by the differential relation # = /7 in per-
turbed orbital motion has been advocated by many authors
[4 to 7]. This choice is instrumental in eliminating out-of-
plane perturbing force components from the in-plane per-
turbation equations which is an essential advantage (espe-

cially in analvtical work) when compared to conventional
formulations.

2. Nomenclature

a (general) array of orbital elements

a semi-major axis

D auxiliary variable, Eqgs. (31)

e eccentricity

fg non-singular orbital elements. Eqgs. (37)

f acceleration vector

h angular momentum (per unit mass) vector

i inclination

[.J,K non-singular orbital elements. Eqgs. (41)

J second zonal harmonic of Earth’s potential field

Ik non-singular orbital clements. Eqgs. (28)

Poq cartesian coordinates of eccentricity vector.
Eqgs. (22

r position vector

R, Earth's radius

T time of perigec passage

u,.u,u. unit-vectorsalongy, v, z axes. FIG.1

v o velocity vector. ¥

w rotation vector of local frame in inertial frame
o) (gencral) ditference element

€ (general) small parameter

V) true anomaly

v quasi-angle. Egs. (19)

u central body's gravitational parameter
o auxiliary element, Eq. (30)

¢ argument of latitude. ? + o

y' quasi-angle. Egs. (19)

1z argument of perigee

0] modified argument of perigee. Eqgs. (21)
Q right ascension of ascending node

Superscripts ~ and ' refer to differentiation with respect to
time and quasi-angle r. respectively.

3. Desirable Properties of Perturbation Equations

The evolution of a satellite orbit under perturbing forces is
described by a svstem of at least six differential equations
representing the rate of change of a sct of variables describ-
ing the orbital state.

Svmbolically. it is possible to write:

(1) a=Flaf(]. a(0)=a,.

where the three-vector f represents the small perturbing
accelerations. There is quite an amount of liberty in the
choice of a suitable set of state variables or elements a
describing the perturbed motion. Depending on the appli-
cation in mind onc set of elements could be superior to
another set. Although it would be futile to try to develop
unambiguous criteria on the basis of which the best set of
elements could be selected in all possible applications. it is
certainly worthwhile to identify a few desirable features
serving as a basis for the selection of a suitable set for a
given application.
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A few criteria to be taken as guidelines for the selection of a
suitable set of orbital parameters would be the following:

a) The perturbation equation (1) should be non-
singular in terms of the set of elements a. This
means that there exists a uniform upper bound M on the
absolute value of F for all possible values of a and f:

(2) |F(a.Dj <M.

b) The elements should be slowly varying. i.e.
they should become constants in the absence of per-
turbations:

3) F(a.0) =0=a (1) = a,.

This property would be advantageous in the numerical
integration of the perturbation equations because it
permits the use of a large step sizc.

Since it is felt that the latter criterion is too restrictive, the
following morc liberal criterion may be adopted:

b) The elements are allowed to be quasi-slowly
varying. i.e. the elements should remain of the order of
¢ (e representing the order of smallness of the perturba-
tions) during unperturbed motion:

4 [F(a.0)[ =0 ().

This relaxation does not affect the step size required for
numecrical integration and opens up new avenues for the
selection of suitable orbit parameters.

¢) Itisdesirable that the chosen set of elements leads to an
uncoupling of the out-of-plane perturbing force compo-
nents from the in-plane motion. This property is of par-
ticular importance in analvtical perturbation analyses.

d) In order to minimize computation time. it is desirable
that the equations should be as “compact™ as possible.
On the one hand. this sets a limit on the number of

equatorial pole
z

\orbit
motion

Earth’s
equator

first point
of Aries

FIG.1: Visualization of perturbed orbital motion

equations (= 6) required to describe the complete
system and. on the other hand, the number of numerical
operations within each equation should be minimized.

e) The perturbing force components should have a con-
venient form when cxpressed in terms of the selected set
of elements.

4. Orbit Mechanics Background

The evolution of a satellite’s position vector r (r) within an
inertial refence frame is described by Newton’s second law:

(35) F=—urirt+ 1.

In addition to the inertial geocentric X, Y, Z reference
frame a local moving x, v, = frame is introduced (FIG.1). In
this. the x axis points along the instantaneous position
vector r while the v axis lies in the plane defined by the
instantaneous position and velocity vectors rand v such that
v has a positive ¥y component. The plane containing the r
and v vectors is known as the osculating plane and
changes its orientation continually under the influence of
the normal perturbing force component. The z axis is
directed along the instantaneous normal to the osculating
plane and thus points along the vectorh = r X v.

Similarly. as in rigid body dynamics, the motion of the local
reference frame with respect to the inertial frame may be
described by means of a rotation vector w. The rate of
change of any vector quantity b can now be expressed as
b = [b] + w X b where [b] refers to the derivative of b
cvaluated in the local frame. Application of this rule to the
vector r yields:

(6) V=rF=7u, +rw.u —rwu,.

From the definition of the osculating plane. the velocity
vector cannot have a component along the z axis, so that

(7) w, = 0.

Differentiation of the velocity vector in the same manner,
taking account of the result in Eq. (7). leads to:

F=Fu +(rw)u —rwu +
(8)

+rw.u. +rwow.ou..

On the other hand. the right-hand-side of Eq. (4) can be
expanded along the local axes to give:

(9) i=(,—wryu +fu +fu.

Comparing the components of ¥ in Egs. (8) and (9). the
following three identities are found:

. 5 5
F—rwo=f —wr,

10)  rw. +2Frw. = f,

rw,w. = f..
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Explicit expressions for w_and w. can be obtained by study-
ing the rate of change of the angular momentum vector h:

(1) h=rxf=r(fu —fu).

Because of the differentiation rule introduced above. h can
also be expressed as:

(12) h=hu +h(wou —wu).

Comparing the results of Egs. (11) and (12). the following

expressions are found in addition to the already known
result of Eq. (7):

(13) h=rfiw =rflh

The last relationship of Eqs. (10) provides the remaining
component of w:

(1) w. = hir.
The results obtained so far may be summarized as:
(15) F—HiIr=f —ur; h= rfii

(16)  w, =rflh;w, =0 w. = hir.
The first set, i.e. Eqgs. (15), describes the in-plane per-
turbed motion whereas Eqs. (16) represent the rotation of
the local x, y, z frame attached to the instantaneous r and ¥
vectors relative to inertial space. FIG. 1. Eqs. (15) and (16)
together form a convenient starting point for the derivation
of various sets of perturbation equations in the Gauss form.

The motion of the local x,y, z frame can readily be inter-
preted as that of a rigid body spinning around the z-axis
with a spin rate w. and perturbed by a disturbance torque
rf., resulting in an instantaneous rotation rate w,.

5. Non-Singular Perturbation Equations

The conventional Lagrange Planetary Equations [1] are not
the most suitable perturbation equations for many practical
applications. The singularities for small eccentricities and
small inclination in the equations for & and . respectively,
may lead to difficulties in the integration. Furthermore, the
osculating (true, mean, and eccentric) anomalies become
ill-defined for small eccentricity.

Before presenting a non-singular alternative to the
Lagrange Planetary Equations the motion of the local x, v, z
reference frame is considered in more detail. The orienta-
tion of this plane is usually described by the ~Euler angles™
2, i, ¢ (FIG.1). The components of the rotation vector w
can thus be expressed in terms of (/). £ and ¢:

w, = (i) cos ¢ + Q sinisin ¢.
(17)  w,= — (i) sin ¢ + Qsinicos ¢.
w.o=¢ + Qcosi.

Using the results in Egs. (16). these can be solved for:

(1) = (rf.th) cos ¢.

(18) Q = (r f/h) sin gfsin i,

¢ =hr — Qcosi.

Thus, Eqgs. (18) are cquivalent to Eqgs. (16) and. together
with Egs. (13). provide a complete description of the per-
turbed orbital motion.

5.1. Equations for Near-Circular Orbits

An essential step for the following analysis is to define the
quasi-angles v and . using the ditferential equations:

(19) v =w.=nir: p = Qcosi.

These definitions permit formal integration of the last
relationship in Eqs. (18):

(20) V=g o+ oy

In the absence of perturbations. 3 may be taken to be zero
and r becomes cqual to the argument of latitude ¢ = w + ¢
with constant «. In the perturbed case, r may be expressed
in terms of the osculating truc anomaly by introducing a
“modified™ argument of perigee @:

2y v=9+a: o=w+y.

The radial position of the satellite can thus be written as a
function of 1:

r(v) = (BPh)/(1 + e cos ) =

I

(Fho)/(1 + p cos v + g sin v).
where

(22) p=ecos@: g=esin@.
The radial component 7 of the velocity vector is equal to:
(23) P =vdridv = (wh) (psinvy — g cos v).
Here. use is made of the fact that in arbitrary perturbed
motion, the position and velocity vectors have the same
form in terms of the instantaneous elements as in the unper-
turbed case (i.e. condition of osculation). This implies that
the following constraint equation needs to be satisfied:
(24) pcosv+Gsinv=2hhlur)=2hflu.
where the last of Eqs. (15) has been substituted. A second
equation for p and ¢ follows from the equation for #in Eqs.
(15) by differentiating Eq. (23):

psiny — gcosv =

=hfdu+rf (psinv—qcosvih.

Eqs. (24) and (25) readily vyield the desired perturbation
equations for p and ¢:
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p = (hlw) {f,sinv +

+ fi[cos v + wr (p + cos v)ii]}.
(26)
g = (hu) {— f cosv +

+ fo[sinv + wr (g + sin v)h}.

It is important to recognize that Eqs. (26) do not contain f.,
i.e. the normal (out-of-plane) perturbing force component.
This is a clear advantage over the conventional equinoctial
elements [8], especially for analytical work. Also it should
be appreciated that this formulation results in generally
more compact expressions than more conventional formu-
lations of the Gauss™ form.

The complete set of perturbation equations for near-
circular orbits may now be summarized as:

h=rf,.

(W) {f. sinv +

D
+ f.[cos v+ ur(p + cos v)/h']},
g = (huw) {— f.cos v +
27
+ f; [sinv + u r (g + sin v)/h’]},

(i) = (r fJh) cos (v = ).

= (r fih)sin (v — y) cot i,

= hir.

(£2 = plcos ).

It can be argued that the angle y makes the equation for £
superfluous. For a geometric description of the orbit plane
motion, however. the angle € offers definite advantages
over i and may therefore be included as an extra equation.

Finally, it should be stressed that the perturbing force com-
ponents f,, f.. f- need to be expressed in the set of elements
adopted. This involves a great deal of labor for realistic per-
turbations but should be no more difficuld in the present
formulation than in other non-singular theories (c.g.
equinoctial).

5.2. Equations for Near-Equatorial Orbits

For orbits with inclination near 0 or ;7 (referred to as near-
equatorial) a singularity in the equations for 2 and y may
appear, cf. Eqs. (18). A non-singular formulation for the
out-of-plane motion follows readily from the analysis
above. Introducing the new variables:

(28) j=sinicosy; k= sinisiny

Eqgs. (18), (19) and (20) can be used to show that:

() =@ fh)A—F — k) cosv,

k

(29)

+ (r D) = 7 = k)" sin v,

where +. — holds for prograde (i.e. i < 90°) and retro-
grade (i > 90°) orbits. The two equations for j and k in
Eqgs. (29) replace those for i and y in Egs. (27). For a near-
equatorial orbit the ascending node position becomes ill-
detined: small perturbing influences may shift it by large
amounts.

Unlike the behavior ot £ the new variable:
(30) oc=QFy
remains well-defined for prograde and retrograde near-

equatorial orbits so that the following equation may be
added:

o=D(rf/h) (jsinv — kcosv);
(31)
D=1[1+ (- —k)"].

By integrating Eq. (31) using ¢ (0) = £, along with Egs.
(29), 2 may be obtained as:

(32) Q=01 =0 =% arctan (k/)),

without loss of precision for near-equatorial orbits. After
adding the equations for A, p, g and v given in Egs. (27), a
system of perturbation equations which is non-singular for
both near-circular and near-equatorial orbits has been
obtained.

For applications where the orbit is eccentric with a near-
equatorial orbital plane. the equations for p, g may be
replaced by a more familiar form foreand @ = w + ¥

é = (hlw) {f.sin ¢ +

+ fy [cos & + wr (e + cos 9)h]},

SE
I

[l e)) {— f,cos & +
+ £ (1 + w rlh7) sin 9},
where
(33) d=v—oa;r= 0l +e+cos(v— ).

The advantage of @, as compared with the usual argument
of perigee w, is the absence of the normal perturbing force
component in its perturbation equation. Thus, a decoupling
of the in-orbit motion tfrom the osculating plane “rigid-
body™ motion is accomplished. It is evident that the intro-
duction of the quasi-angles v and y have been instrumental
in this decoupling. The usefulness of these angles has
already been recognized by Hansen whose ideal coordinate
frame [4] is obtained from the local x, y, z coordinate frame
(FIG.1) after a reverse rotation over anangle v = ¢ + .

Another asset of the formulation in terms of v is the fact
that its perturbation equation ¥ = k/r* is more compact
than the corresponding ones for any of the well-known
anomalies, which all have terms containing the perturbing
force components. This advantage will be appreciated
when expressing the perturbation equation in terms of v as
the independent variable. which would be a first step in an
analytical approach. Since d/dv = (1/v) didt = (»~/h) didr,
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the following expressions for the near-circular near-equato-
rial case are obtained:

h(v)y = (rih) f,,
pr(v) = (Flu) {f, sin v +

+ fileos v+ ur (p + cos vIRT}
g (v) = (Fl) (= f, cos v +

+ £, [sinv + ur (g + sin v)/h]},
(34) '
)y =2 (P FRY = P = k)" cos v,

k(v)y == (P fhYy A -7 — k) siny,

¢ (v) = rih,
[0 (v) = D (¥ fJh°) (jsin v — k cos v)].

This system is still exact and permits the expression of all
the variables in terms of time in a parametric manner after
integration.

5.3. Difference Elements

In the previous Section, two fast variables (i.e. parameters
which have a non-zero rate of change in the absence of per-
turbations) appear, namely v and ¢. These variables need
smaller step sizes in a numerical integration routine than
those required by the slow orbital elements. A simple way
of avoiding fast variables is provided by the so-called differ-
ence elements, which are obtained by subtracting the cor-
responding “unperturbed™ part from the fast variable. In
the absence of perturbations these difference elements
vanish and can thus be considered as slow variables. In the
present application, the following expressions are intro-
duced:

(35) éx' =V TV ér =tr—1

where the subscript u refers to the unperturbed element.
The perturbation equations for o, and 6, follow readily:

S, = hir — hyr}> =
(36) = (ru: éh -2 h(l Ty ér - h[) C(’rl)/(ru r)Z.
6)‘, (1’) = (hll ér: +2 h(l Ty ér - ru: é/z)/(h(i h) .

\
|

=(hy" )1 + pycos v + gy sin v),
o, =r—vr, O0,=h—h,.

In order to avoid the loss of precision inherent in the sub-
traction of two almost identical quantities. the difference 6,
should be calculated with care [3]. The same reason
suggests integrating 0y, 0, and 0, rather than #, p, g them-
selves, which only makes a difference in the choice of initial
conditions. The unperturbed quantities v, and ¢, are
obtained from Kepler’s equation — 1, (v) in a direct manner
and v, (r) indirectly by iteration of the inverse equation.

6. Non-Conventional Perturbation Equations

As was mentioned in Section 3. orbital parameters which
are not constants in unperturbed motion but vary within a
band of a similar magnitude to that produced by the pertur-
bations are referred to as quasi-slow elements. These
parameters appear to be just as suitable as the conventional
orbital elements for describing the perturbed orbital
motion in both numerical and analytical work.

6.1. Near-Circular Orbits

This idea is particularty useful for near-circular orbits
where the variations of f and g in unperturbed motion
would be of a similar order of magnitude as those due to the
perturbing influences. Introducing the quasi-slow ele-
ments:

f=ecos¥ =pcosv+ gsinv,
(37)

g=esin =psiny —qgcosv,

the non-singular perturbation equations introduced in the
previous Section can be written as:

h=rf,
f= —glz/r3+2hfy/lu,

g=fhir+hflu+gf rh,

(38)
() = = (r fih) (1 = J = k)" cos v,
k=% @fMh) A =7 =) sinvy,
V= h/(z.

where 7 = (W/u)/(1 +f). The equation for ¢ should be
added if an explicit expression for £ is desired, as in Eqgs.
(31) and (32). This set of equations is extremely convenient
due to its compact form. A similar form with true longitude
(L =19 + w + Q) rather than v describing the local frame
motion has been used in the study of relative motion under
air drag and oblateness perturbations [3].

As before v may be replaced by its slow difference element.
It is of interest to point out that by introducing the differ-
ence elements dyand o,, a system which can also be used for
larger values of eccentricity is obtained. The price paid is
rather lengthy expressions. where ¢ is taken as the indepen-
dent variable.

In terms of the independent variable v, Eqgs. (38) become
even more compact:

B (v) = P fih,
F)=—g+2rfu,
g W =f+rflu+grfin,

(39) j'(v) = K (r’ f./h%) cos v,
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vet k' (v) = K (P f./h%) sin v,
(39)
¢ (v) = Flh,

[K' (v) = — (7 f./W?) (j cos v + k sin v)],

where K = cos i has been introducted in order to avoid the
sign ambiguity but at the cost of an extra equation. The con-
straint K* = 1 — 2 ~ k* may be useful for checking the
consistency of the results after integration.

The system in Egs. (39) can quite readily by extended for
arbitrary values of eccentricity by means of the difference-
elements &, and J,:

O (V) = =0, + 27 fu,
(40)
O (v) = Op + P flu + (g, + 0) P £,

where g, (v) = ¢, sin (v ~ @,). This illustrates how non-
conventional elements can be converted to orbital paramet-
ers with a zero rate of variation in the absence of perturba-
tions.

6.2. Near-Equatorial Orbits

In the case of small inclinations, a similar approach to that
given above for small eccentricities may be followed.
Assuming that the rate of change of the inclination in
unperturbed motion is of a similar magnitude as that
induced by the perturbations. the following quasi-siow
variables may be introduced:

I=sinicos(v—y)=jcosv+ ksinvy,
(41)

J=sinisin (v - y) =/jsinv — k cos v.
These variables satisfv the system:

I=—Jhir¥+Krflh,
(42)

J=Thir,
where K = cosi = + (1 ~ J* = J%)'2. The variables I, J,
K can be interpreted as the components of a unit-vector
along the inertial Z-axis projected upon the local x,y, z
coordinate axes [9].

A particularly attractive set is obtained when using v as the
independent variable, cf. Egs. (39):

R (v) =P fih,
ff)=—g+27rfiu,
g W) =f+rfiu+grfin,
(43) I'(v)=—J+ KPP,
I (v) =1,
¢ (v) = Plh,
(K (v) = = [P fJR).

Here again, the equation for K is redundant. The system in
Eqs. (43) is valid for near-circular near-equatorial orbits.
The compactness of this system makes it attractive for both
analytical and numerical applications.

The equation for o defined in Eq. (30) here becomes:
(44) o (v)=J(FfADHA £ K).

The introduction of difference-elements &, and 6, would
extend the usefulness of this system to any value of inclina-
tion:

6 = =0, + KPf/H,

(45)
(5], = é/.

In conjunction with Eqs.(40) a compact system with
general applicability would be obtained.

7. Short Hlustration of the Theory

A shortillustration of the applicability of the considerations
presented above will be given here. More extensive appli-
cations can be found in the literature, e.g. [3 and 7] which
employ a few of the guidelines advocated here.

The main perturbing term due to the Earth’s potential field
is the second zonal harmonic commonly denoted as J,. The
perturbing force components exhibit an extremely simple
form when written in terms of the “elements” I, J of Egs.
(41) and K = cos i:

fi=—e(1 =370,
46) f,=-2¢1JIr,

f.=-2¢&J KIrt,
where ¢ =3 uJ, R2. After substituting these com-
ponents into the equations for /, J and K in Eqs. (43) the
following convenient system is obtained for a circular orbit;

J'"W)y+J=-086JK,
(47)

K' (vy=0oJJ K,

where 8 = 3 J, (R/a)*. The initial conditions are specified
as:
J (vo) = sin iy sin (v — ).

(48) I (vo) = sin iy cos (vo ~ ),
K (vg) = cos i,.

To a first-order approximation, the equation for J (v) in
Eqs. (47) can immediately be solved:

(49)  J(v) = sin iy sin [(1 + 0 KH)P ).
From this result the behavior of the line of nodes can readily

be checked. On the basis of the definition of J (v) in Egs.
(41), it follows that
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(50)  yw (v) = — (8/2) v cos® .

Thus, the well known regression of the nodes at a rate of
(cf. [4], §6.3)

(51) 49 = - 3], x (RJa)* cos i,

per revolution has been reproduced.

8. Concluding Remarks

A number of perturbation equations in terms of non-
singular and non-conventional orbital parameters have
been presented. By the use of the quasi-angle v, con-
sistent separation of in-plane motion on one hand and the
orbit plane motion on the other hand has been achieved.
The resulting systems should be useful in both analytical
and numerical applications of perturbed orbital motion
because of their compact size relative to more conventional
perturbation equations. The applicability of a particular
formulation is largely determined by the ease with which
the perturbing influences can be incorporated.
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