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On the Maximization
of Orbital Momentum
and Energy Using Solar
Radiation Pressure’

J. C. Van der Ha®? and V. J. Modi®

Abstract

This study is concerned with determination of the time-dependent optimal
orientation of a solar sail for maximum increase in the total energy (semi-major
axis) and angular momentum (semi-latus rectum) in one revolution of the spacecraft
around the sun. The solutions are found in an implicit form involving the state and
adjoint variables by means of Pontryagin’s ‘maximum principle’. Explicit approxi-
mate representations of the optimal control strategy are obtained in terms of
asymptotic series in the small parameter denoting the ratio of solar radiation to
gravity forces. Accuracy of the analytical approximations is assessed through a
comparison with results obtained by a numerical iteration technique based on the
steepest-ascent method. No restrictions are placed on the eccentricity of the initial
and the ensuing osculating orbits, nor on the position of the spacecraft in the
starting orbit. The analysis should prove useful in the design of a transfer mission to
the distant planets or for reaching an escape trajectory out of the solar system.

Nomenclature

a semi-major axis

a, semi-major axis of earth’s orbit, 1 A.U.=1.496 X 10°® km
velocity of light, 2.998 X 10® m/s

e eccentricity
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orbital inclination with respect to the ecliptic

semi-latus rectum

total mass of spacecraft

auxiliary orbital element, e cos &

auxiliary orbital element, e sin &

radius vector pointing from the sun to spacecraft

time

inverse radius, 1/r

unit vector normal to the solar sail with components along the
£0, Mo and ¢, axes, Eq. (1)

unit vector along solar radiation, i.e., radial direction

total effective illuminated surface area of spacecraft

solar constant, 1.35 kW/m?

total energy, —1/a

nondimensional solar radiation force, Eq. (2) with components
along the &g, Mo, o axes, Eq. (4)

Hamiltonians in maximization of E [Eq. (11)] and L [Eq.
(26)], respectively

auxiliary variable, In(R)

auxiliary functions, Egs. (17)

auxiliary functions, Egs. (32)

functions of control angles, Eqgs. (4)

solar radiation pressure, Cg/c 4.51 X 10~ N/m?

rotation vector describing motion of the local &y, 1o, {o frame
in the inertial X, Y, Z frame, Egs. (5), with components along
the &, Mo, $o axes

inertial frame of reference

control angles describing arbitrary orientation of the solar sail
ratio of solar radiation and gravity forces, Eq. (3)

true anomaly, designating the position of the spacecraft in the
instantaneous osculating plane, v — &

vector of adjoint variables, Ag belongs to E, A; to L, A, to ®
and A; to ¥

sun’s gravitational parameter, 1.326 X 10%° m3/s
independent variable, Eq. (7)

reference frame fixed to the solar sail after rotations « and 8,
Fig. 2b

local coordinate axes, along radial, circumferential and orbit-
normal directions, respectively, Fig. 2b

intermediate frame fixed to the solar sail after rotation by «,
Fig. 2b
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p material parameter characterizing (specular) reflectivity of the
solar sail
material parameter (1-7-p)/2

T material parameter indicating the transmissivity of the solar sail

¢ position angle of satellite as measured from the line of nodes,
Fig. 2a

1/ position of the line of nodes measured from the reference line

v = 2nk in the osculating plane, Fig. 2a

w position of the perigee measured from the reference line
v =27k in the osculating plane, Fig. 2a

o, ¥ auxiliary elements, e cos 6 (p cos v + g sinv)and e sin § (p sin v
— g cos V), respectively

Py, ¥y auxiliary elements, pgo cos v+ ggo sin v and pgo sin ¥ —qgo
cos v, respectively

Q longitude of the ascending node, measured from the X axis,
Fig. 2a

Dots and primes denote differentiation with respect to time and v, respectively, and
initial conditions are identified by the subscripts 00.

Introduction

The steady flux of solar radiation in outer space offers an extremely attractive
mode of propulsion (so-called solar sailing) for interplanetary space probes. The
abundance of radiation energy ensures a reliable and unremitting source of motive
power. The feasibility of the concept is established through various studies, e.g. by
Garwin [1], Tsu [2] and Kiefer [3]. In fact, for some deep-space missions,
propulsion by solar radiation forces may well constitute the only foreseeable
practical means of transfer. In this regard, the technology assessment of a solar sail
mission to Halley’s comet seriously undertaken by the Jet Propulsion Laboratory
may be mentioned: it was planned to launch a scientific package of approximately
850 kg into a trajectory by means of an 850 m X 850 m aluminized 0.1 mil thick
mylar sail (Fig. 1) for rendezvous with the comet. Although the project was finally
abandoned, the potential of solar sailing had been clearly established.

Since the magnitude of the thrust generated by the solar radiation pressure is
proportional to the effective area/mass ratio of the spacecraft, it is imperative to
employ the lightest materials available meeting the structural requirements for the
sail and supporting booms. The combination of useful payload and solar sail would
in most practical cases, lead to an area/mass ratio in the range of 50 to 200 m?/kg
corresponding to characteristic accelerations between about 0.5 and 2 mm/s®. A
propellant force of this order of magnitude may be small in comparison with that
from chemical thrusters, but the latter have a very limited lifetime. It is important,
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SPARS STAYS

SAIL

OUTLINE 850 m

FIG. 1. A Schematic Diagram Showing the Concept of Solar Sail and Its Supports

however, to utilize the available solar radiation power as efficiently as possible in
order to limit the duration of the mission to a practical length of time. Since both
the magnitude and the direction of the resulting thrust depend upon the orientation
of the sail with respect to the radiation, it is interesting to evaluate the time history
of the sail setting which would fulfill a certain mission in a prescribed optimal
manner.

The literature review suggests that only a few problems of this type have been
studied. If the orientation of the sail is kept fixed with respect to the local
reference frame, a solution for the resulting trajectory in the shape of a logarithmic
spiral is valid provided that the initial velocity vector has a specific magnitude and
direction. An expression for the distance as a function of time can be derived for
this case and the best (constant) sail setting and corresponding spiral angle
maximizing the radial distance can be determined graphically for a given A/m ratio
[4]. Recently, an out-of-plane spiral transfer trajectory involving the reversal of the
sail orientation with respect to the orbital plane, was presented by the authors [5]:
the best sail setting for maximizing the inclination at a prescribed distance (and vice
versa) was determined and the response established. Using a numerical Newton-
Raphson iteration method, Lebedev et al. [6-8] determined the minimum-time
strategy for transfer between two coplanar circular orbits.

In many deep-space missions, e.g. rendezvous with a distant planet or escape
from the solar system, it is important to increase the size of the orbit in an
effective manner. While the appropriate optimization criterion would depend on the
objective of the actual mission under investigation, two specific criteria with a wide
range of applicability are selected in the present investigation:

(i) which control strategy leads to the maximum increase in the semi-major axis
(and thus total energy) after one revolution?
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(ii) which control strategy yields a maximum increase in the semi-latus rectum
(and thus angular momentum) after one revolution?

While the control strategy which directs the thrust along the instantaneous velocity
vector at all times would likely be very effective in case (i), a formulation in terms
of the optimal control theory [9] would evaluate, for instance, the effect of
steering the spacecraft relatively closer to the sun initially in order to take
advantage of the larger magnitude of the force there. Application of Pontryagin’s
maximum-principle [10] provides necessary conditions to be satisfied by the
optimal control strategy. The solutions are found in an implicit form in terms of
the state and adjoint variables and approximate explicit representations can be
determined in terms of an asymptotic series in the small parameter denoting the
ratio of solar radiation and gravity forces. The approximate analytical results are
substantiated by means of a numerical iteration procedure based on the steepest-
ascent method [11]. No restrictions are placed on the position of the satellite in
the initial orbit nor on the nature of the initial and ensuing osculating ellipses.

Formulation of the Problem

An inertial X, Y, Z reference frame with origin at the center of the sun is
introduced in Fig. 2a where the X axis points towards the initial position of the
spacecraft and the X, Y plane coincides with the initial osculating plane, usually the
ecliptic, while the Z axis is aligned with the initial angular momentum vector. In
addition, a local £, m9, {o frame moving with the spacecraft is introduced: the &,
No and {, axes point along the radial, circumferential and orbit-normal directions,

ecliptic

-/’
plane

ascending
node

v=b+y

FIG. 2a. Configuration of Sun and Solar Sail in Heliocentric Trajectory
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sun

FIG. 2b. Successive Rotations «, § (and ) for Defining Arbitrary
Orientation of Solar Sail

respectively. Any orientation of the solar sail in the &, n, { frame is described by
the following successive Eulerian rotations (Fig. 2b): taking the outward normal to
the sail to be directed, initially, along the &, axis, a first rotation a along the §,
axis produces the &, my, {; frame and brings the solar sail to the required line of
intersection with the orbital plane. A subsequent rotation § along the n; axis yields
the £, n, { frame and moves the normal to the sail out of the orbital plane to its
prescribed orentation. A final rotation vy along the normal (£ axis) could be
performed for attaining the proper attitude of the sail in its 1, { plane without
affecting the resulting solar radiation force.

The components of the unit sail normal u” taken along the local &, 1o, {¢ axes
depend on « and f only:

u" = (uy, u,y, u3) = (cos a cos B, sin & cos B, — f) )

In nondimensional form (unit of length equals 2, =1 A.U. and unit of time is
1/(27) year), the solar radiation force upon a homogeneous solar sail can be written
as,

F = ¢ |luy| {ou® + puy u"}/ 2. )

Here the physical force is nondimensionalized through multiplication by a2 /(mpu).
The component containing the parameter o is due to the absorbed radiation and is
directed along the vector u* while the term with p is due to the specularly reflected
photons. The absolute sign around u; = (u” - u®) is necessary to ensure that the
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force has a non-negative component along the direction of the radiation u®. The
small parameter €; denotes the ratio of solar radiation over gravity forces,

€ = 28" (A/m) (a?/ug) = 1.52 X 1073 (A/m) 3)

It may be noted that S'= Cy/c where the solar constant C; and thus the force in
Eq. (2) varies proportionally to the inverse square of the distance from the sun.
This is because the total radiant energy emitted by the sun equals the amount
passing through any concentric spherical surface around the sun per unit time
(taking the rate of energy output constant). Components of the solar radiation force
in the local £, 1o, {o frame can be expressed in terms of components of u” as:

Fy = e5luyl (0 + pu?)/r* = ¢, R/F?,
Fy = epluyl uy upy[r* = e, S)r?, ()
F3 = €gpluyl uy us/r* =¢, T/r?,

with R, S and T defined in an obvious manner.

In general, when T # 0, the plane of the orbit will shift. The motion of the &,
Mo, $o frame relative to the inertial X, Y, Z frame may be described in terms of the
rotation vector W with components W,, W,, W3 along the instantaneous &g, 19, {o
axes:

W, Q sin ¢ sin (i) + (i) cos ¢
W= |W,| = [ cos¢sin (@ — (@)sin ¢ (5)
Ws v=¢ + Q cos (i)

Since the velocity vector £ lies in the instantaneous orbital (¥, 7o) plane (condition
of osculation), the vector WX r cannot have a component along the {, axis,
implying that W, =0. The motion of the &y, mg, {o reference frame can be
visualized as the sum of the rotations W3 =» along the normal and W, along the
radial directions, the latter component solely describing the shift in the orientation
of the orbital plane. The equations of motion follow from Newton’s second law,
accounting for rotation, with scalar components along the &g, 19, $o axes given as:

r+1/rr —rv? = eR/r,
rv + 2rv = €.Sir?,

(6)
rWy v = e, TIr?.
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The characteristic feature of this formulation is the fact that the in-plane perturba-
tions appear uncoupled from the out-of-plane force component. It is advantageous
to employ the quasi-angle v, Eq. (5), as the independent variable. Its dependence on
time is given by the equation

v=¢ + Q cos (i) = 8/*/r?, )

which can be derived from angular momentum considerations (2 = 2'/?) in conjunc-
tion with the last relation of Egs. (5). As in the case of the classical Keplerian
solution, the in-plane equations can be transformed in terms of u = 1/r and &

W) + u@) = (1 — &R/ — € Sut'[(uL);

8)
L) =2e¢ S

The physical interpretation is familiar: the solar radiation force produces perturba-
tions in the elements of the Keplerian ellipse emerging from Egs. (8) when e, = 0.

To have a uniformly valid analysis for all eccentricities including e = 0 where the
argument of the perigee becomes indeterminate, the inverse radius is written as
u@w)=(+p cos v+gq sin »)/¢ with slowly varying elements p, ¢ and 2. The
auxiliary orbital parameters p and g can be interpreted as the Cartesian components
of the eccentricity vector e (pointing from the origin to the perigee) along and
normal to the line v = 2@k in the instantaneous orbital plane; thus p =e cos @,
q = e sin . The second-order equation for u(v) is transformed into two first-order
autonomous equations in terms of ®(¥)=p cos v + q sin v and ¥(¥) =p sinv—q
cos v:

') =¥ + 2¢, S;
€))
V@) =& +¢ {R+S ¥/ + D)}

With these preliminaries, one may proceed to evolve an optimal control strategy
with the help of Pontryagin’s maximum principle. The equations involved are
considerably simplified if two new state variables £ =—1/a (i.e., total energy) and
L =In(?) are introduced. Defining a set of adjoint variables A, A;, A, and A3
corresponding to the state variables £, L, ® and ¥, respectively, the complete
system of in-plane equations can be written as:

E'(v) = 2€; {R@ ¥ + S@ (1 + @)} exp (L), £(0) = —1/aco;

L'(w) = 2¢, S@)/(1 + @), L(0) = In(R0); (10
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®'(v) = —F + 2¢, S (@), B(0) = Poo = €gp COS W0}
V@)= + ¢ {R@E) + S@ ¥/(1 + 9)), W(0) = Voo = —e€gp sin Goo;
Ao(®) = 0;

A (V) = 26, Ao {R@) ¥ + 5@ (1 + ®)} exp (—L); (Co(,:g ;

No() = A3 — 2¢, ho S@) exp (L) + €, S@) [2A, + M W] /(1 + B)?
M) = A, — 2¢, Ao R@) exp (—L) — € A S@)/(1 + ).

The behavior of the orbital plane can be described by the usual equations for ({)and
which follow readily from Egs. (5) and the results for W, in Egs. (6). However,
since the out-of-plane motion turns out to be irrelevant for the present investigation
they are disregarded here.

Maximization of Total Energy

In this section, an approximate analytical representation for the optimal control
strategy () maximizing the total energy E (and thus major axis ) at v =2nm is
derived. The Hamiltonian for the present problem, Egs. (10), becomes:

H(&) = Ra@ - kz‘l’ + GSR(&) {2}0 N\ exp (_L) + Rg}

+ € S@) (2ho(1 + P) exp (L) + (2, + A3 B)/(1 + ®) + 22, ). (11)

For a(v)to be an optimal control vector over the fixed interval (0, 2x), the following
necessary conditions must be satisified:

(i) 8H/da = dH[df = 0;
(ii) H(&) = constant;
@iii) A;(2m) =0, j= 1,2, 3; (transversality)
i) M =1; (12)
according to Pontryagin’s Maximum Principle [8, 9]. From the conditions (ii), (iii)

and (iv) it follows that

H=2e {[¥R@) + (1 + &) S@)] exp (L)}v=2x, (13)
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which equals E'(2m), Egs. (10). The conditions in (i) lead to the following equation
for a,

a=[2¥exp (—L)+ As] g—f
+ [2(0 + ®) exp (—L) + 2\, + M3 P)/(1 + D) + 2)\2‘] g—i, (14)

and a similar one for B. It follows readily that f(»)=0 is a solution for the
out-of-plane rotation confirming that the optimal trajectory is a planar one since the
solar radiation force remains in the plane of the orbit. The equation for the control
angle a(v) is reduced to the following implicit relation:

pcosa(l —3sin® @) _ 20+ Q3
sine(0+3pcos2a) 21 +P)+ 2\ + M) YA+ D) +2200,°

(15)

with a in the interval (0, 7/2) on physical grounds. For obtaining approximate
solutions for a(¥) from Eq. (15) it is imperative to assess, carefully, the orders of
magnitude of the various terms on the right-hand-side of Eq. (15). Thereto, the
orbital elements and adjoint variables are written as a system of coupled integral
equations derived from Egs. (10) by integration while taking the mixed boundary
conditions into account:

v

a(v) = ag + € @R ¥+ S + &)]/2} dr;

14

) = Lo t+ 26 {2.5/(1 + ®)} dr;

"y (16)
D) = B (v) + ¢ {2Scos(r—v)+ [R+S ¥/ + ®)] sin (r —v)} dr;

Y1) = ¥o(v) + ¢ {[R + S ¥/(1 + ®)] cos (r —v) — 2S sin (r —»)} dr;

2
A (V) = 26 {[R ¥+ S + ®)]/L} dr;
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2
(V) = g {Q sin (1 —v) + P cos (r —v)} dr;

w

(16)
(Cont.)
2w
N@) =€ {Q cos (t — v) — Psin (r — v)} dr.

Here ®o(v)=pgo cos v+ qg sin v and o) =pgo sin ¥ —qoe cos v and the
auxiliary functions P and Q stand for:

P=725/2— S\ + A D)1 + B)?;

17
Q=2R/A+2; S/(1+ ®).

An asymptotic series for a(v) in terms of the small parameter e; can now be
constructed. By writing a(v)=a0(v):+ € oy () + 0(e?), developing the left-hand-
side of Eq. (15) in a Taylor series around &y and expanding the right-hand-side
using results in Eqgs. (16), successive terms in the series for a(v) can be established.
The leading term satisfies the implicit relation:

pcosap (1 —3sin’ ap) _ Wo(¥)
sin g (0 +3p cos? ap) 1+ Do(v)

(18)

A good approximation to the solution of Eq. (18) may be obtained by successive
substitution with a starting value a((,l)(v) =135.26°, (i.e., the solution of Eq. (18) for
an initially circular orbit). The (n + 1)th approximation is obtained from a((,")(v) as
follows:

a((,"H)(V) = arcsin [{1/3 — ¥, tan a((,") [(a/3p) + cos® Ot(()n)]/(l +®)}1'?], (19)

n=1, 2,3, ..., which converges rapidly provided that the initial eccentricity is not
too large. Geometrically, the steering angle oo (¥) in Eq. (19) makes the resulting
solar radiation force aligned with the velocity vector of the unperturbed initial
osculating ellipse at each instant.

Whereas this may serve as a useful guide for very small values of €, it is evident
that higher-order terms relating to the slowly varying geometry of the osculating
ellipse must be evaluated when practical values of € are taken. For the analytical
evaluation of the higher-order terms, an explicit relation for ag (¥) would be needed.
In the special case when the reflection is specular (o =1, 0=0), a closed-form
result for ag(¥) can be derived from Eq. (18),
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(1 + @) {[9 ¥ + 8(1 + ¥p)*]V2 — ¥y}
3[P2 + (1 + 9,)?]

ao(¥) = = arcsin (20)

N =

On expanding both sides of Eq. (15) as a Taylor series in terms of the small
parameter €, the first-order term «; () becomes now:

sin? (2a0)

3
= 28 R0) g g0 ASY)2
2 [3 = cos (2a)] o0 A7/

oy @)=-—

— W %00 Y + o A2 /(1 + ®0)% — 200 o MV/(1 + Bp) b, (21)

where the superscript (1) denotes the coefficient of €, in the expressions in Eqgs.
(16). The trigonometric terms in Eq. (21) can be eliminated in favor of the orbital
variables ®, and ¥, through Eq. (20). Also the integrands in Egs. (16) can be
expanded for small €; and expressed in terms of v. Whereas the resulting integrals
are unwieldly for arbitrary eccentricity, analytical results can be obtained for
near-circular orbits. Thereto, expansions of the trigonometric terms for small ego are
needed. These can be derived using the expansion of Eq. (20) for small egg:

3 sin [2a0()] = 232 — Yo (v) {1 — Po() + 7(2752) Yo (v)
+ Qo () [To () — 7(27%%) ¥o ()]} + O(€do). (22)

After developing R(a) and S(a) around a=a,, e.g., R(@) =Ry () + 0(¢,), the
following near-circular approximations are found:

Ro(¥) = (2/3)** + ¥o(v) {3'2 — Wo()[3"2@o(v) + Yo ()/8]} + O(edo);
(23)
So() = 2(37%%) — W§(»)/6 + O(edo)-

With these results, all integrands in Egs. (16) can be evaluated and near-circular
approximations for ¥(1), 7\%", etc., in Eq. (21) are obtained by integration. Finally,
the following expression for a, (v) with an error of the order e3 is established:
oa; () =—3"¥2 {1 —cos v + 3nq/2 + (4m — 3v/2)¥, — (p + ®y) cos ¥

+ 2p —3q/2 sin v — 9(27¥%) ¥4 (1 — cos »)}

—v {7G"*) (®* — ¢*) sin (2v) — 2(6'"?) €*}

—m {4(6"%) € +3%2 pq}/18

—sin (20) {(p* —¢*)[6"* —4(G3¥*)n] — pq/2}/18
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— [1 —cos 20)] {(P* —q*) 37" + 1/4) + 2(6"*)pq}/18
— (1 —cos ») {(p* —q»)[2(37"% —1/4 + 4 sin (2v)] —3€?/4 — (3%¥?)apq}/18
—sinv {pqg —3%% (2p* + q*)n + 3V2 [4pq cos v + (¢* — 3p?) sin v]
—4(3") (p* — q*) sin () + 6" [e* — (p* —q*) cos ()
— 2pq sin (2v)] }/18
— 62 {3nq¥, + (81 — 3v)¥Z — 2(p + B0 )¥, cos v + 4p¥,
—3q¥, sin v — ¥y [2®0 + 3(272)Wo] (1 — cos v)}/144 + 0O(edo). (24)

Here the subscripts 00 are omitted for brevity. It follows that the first-order
correction €,y () for an initially circular orbit is at most 22¢, degrees (at v =)
below the constant ag = 35.26° control program. It is interesting to evaluate the
response of the major axis under the optimal control strategy. For a near-circular
orbit, a(v) can be written as

a(v) = ago exp {2¢,(1 + %) [237¥%) (v + poo sin ¥ + goo — oo €OS V)
+ 2(6'?) (Poo — Poo COS ¥ — oo sin »)/9 + edov[2
+ (g% — Do) sin (2v)/4 + Poodoo cOs (2) — Poodoo + O(edo)]
+ 0(e2)}. (25)

If ego =0 this result can be reduced considerably yielding a(27) = ago exp [4.8368
€g +0(e2)] after one revolution.

Maximization of Angular Momentum

Here, the optimal control strategy for maximum increase in angular momentum
(and thus semi-latus rectum) per revolution is determined. This corresponds with
maximization of L(2w). The system of Eqgs. (10) remains valid provided that the
equations for £ and A are ignored and the equation for A; is replaced by

'l(v) = 0. Now the Hamiltonian becomes

Ho(@) = M@ — MW + ¢, A3 R(&) + €, S@) {(2A; + M3 0)/(1 + @) + 27,}. (26)

Application of Pontryagin’s maximum principle leads to results as in Eqs. (12) with
A; =1 now. It follows that Hy =L'(2n) and the out-of-plane rotation (»)=0
while the optimal control angle a(v) is given by the implicit relation,
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pcosa(l —3sin® o) _ N1+ D)
sin a (o + 3p cos® a) 2+0T+20 (0 +F)

27)

The orbital elements £, ® and ¥ can be written in the form of Eqs. (16) while the
adjoint variables A, (¥) and A; (¥) become

2m
M) =€ {Qy sin (r — v) + Py cos (1 — v)} d7,
1 4
(28)
2
M) = ¢ {Qq cos (1 —v) — Py sin (1 — v)} dT,
14
with Py and Qg defined by
Py =—S2 + M 1)/(1 + @),
(29)

0y = s S/(1 + ®).

The right-hand-side of Egs. (27) is of the order € so that a(v) is written as
o) =op + €, oy +0(e?) with ap =arcsin (37"2)=35.26". The first-order term
@; () is determined by expanding both sides of Egs. (27) in Taylor series for small
€, yielding the following explicit result,

o (v) = —(0 + 2p) 37¥2/2 [1 + o ()]

. _ (1 —e3o)"”? tan (v/2) _
2 ¥o(v) 31r arctan [ T poo°°+ oo tan /2)]$ 11 — edp)*?

+ 1 — [@6() + cos 1] /(1 + poo)| /(1 — €ko). (30)

The resulting response 2(¥) under the optimal sail setting can be approximated by
integrating L'(v) in Egs. (10) (up to order ¢),

(1 — e0)'”? tan (¥/2)

3—3/2
1 + poo + qoo tan (¥/2)

2v) = L00 €xp | 8egp arctan 1 — el 31

Considering an initially circular orbit, it follows that 22m) =2y exp {4.8368
peg + 0(e? )}. This result is identical to the one found in the previous section while
maximizing the semi-major axis for a near-circular starting orbit. Obviously, also the
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control programs in Eqgs. (24) and (30) are identical for ego = 0 in the present
approximation.

Discussion of Results

The accuracy of the analytical solution obtained in the section entitled ‘“Maximi-
zation of Total Energy” is now assessed by comparison with results from a
numerical iteration procedure based upon the steepest-ascent method [11]. An
arbitrary nominal control strategy is selected and the influence of a small variation
in that control program upon the response is investigated. The variation leading to
the maximum increase in major axis under a prescribed step-length (i.e., the integral
from 0 to 2w of the square of the variation in the control function) can be
determined in terms of the derivatives of the system of Eqgs. (10) with respect to
the control angle. Thus, a generally more effective new control strategy is obtained
and the procedure is repeated. While the algorithm converges rapidly to a
near-optimal control strategy, care must be taken in the neighborhood of the
optimum due to the weakness of the gradient field. By making both the steplength
and the error parameter in the Runge-Kutta integration routine proportional to the
length of the gradient, satisfactory results are obtained. In the present case, the
initial control program is taken as a(v) = (2w —v»)/6 and the optimal strategy is
established to within, approximately, 0.1 degree in less than 30 iterations (Fig. 3). A
relatively small value of the solar parameter (based on A/m = 10 m? /kg) is taken in
this example. The first-order analytical result of Eq. (24) for a near-circular initial
orbit in conjunction with the exact zeroth-order term in Eq. (20) yields an
extremely close approximation when ego = 0.2 (Fig. 32): the maximum discrepancy
is less than 0.1 degree. On the other hand, if egy = 0.4 (Fig. 3b), the near-circular
analytical solution is in error by almost three degrees around v =270°, while still
providing a valid representation for the optimal strategy in the remaining portion of
the orbit. The breakdown in accuracy must be attributed to two reasons: first, it
should be recognized that the first-order analytical result developed here does not
contain terms of order ed, and higher which are likely to be influential when the
eccentricity is as high as 0.4. Secondly, the state and adjoint variables are
represented as perturbation series in terms of €; and only the first-order solutions
are taken into account leading to a rapidly growing error when away from the
initial and final points.

Figure 4 shows the results for a higher value of €;, namely €, =0.09, cor-
responding to A/m =60 m?/kg. As can be expected, the analytical prediction for
the optimal control is most accurate in the case egy = 0; the maximum discrepancy
of about one degree is due to higher-order (in €;) effects. It is interesting to note
that initially the solar radiation force points slightly inwards from the velocity
vector and its magnitude is smaller than that for the case where the force is aligned
with the velocity. This is true for both the numerical and the first-order analytical
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FIG. 4. Optimal Sail Setting for eg = 0.09, w,, = 0 and a Few Values of ¢,,

results, although the effect is less pronounced in the latter case. This apparent waste
of energy is more than recouped during the middle phase of the orbit when the
spacecraft is closer to the sun and the force is larger. In this phase, the direction of
the force is kept outward from the velocity vector, thus providing an additional
boost to its magnitude. In the final phase the force tends to align itself with the
velocity. The osculating ellipses corresponding to the resulting trajectory show that
the eccentricity increases from 0 to a maximum of about 0.2 near v = 190° and
decreases to about 0.02 with the position of the perigee at about 70° in the end,
v=2n. The analytical result for epq = 0.2 shows a maximum error of about 2.5
degrees as compared to the steepest-ascent solution. Figure 5 shows the optimal
steering programs for three different starting points in the same initial orbit of
eccentricity eg = 0.2 (€, = 0.15), obtained by the steepest-ascent iteration routine.
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It is seen that the nature of the control strategy as well as the resulting final value
a(2m) vary considerably with the position of the starting point.

It is interesting to compare the effectiveness of the optimal strategies with that
of other near-optimal control programs, in particular the constant sail setting
o = arcsin (37/2) = 35.26°. The latter control is expected to be a very effective
strategy for small €; and small eqo since it generates the maximum component of
the force along the velocity for an unperturbed circular orbit. Table I gives a
comparative overview of the response a(2m) for a few values of €; and egy (woo is
taken zero). Although the results seem to be close in most cases, it must be
emphasized that a difference of one digit in the fourth decimal place represents a
physical distance of about 15,000 km. On the other hand, it is evident that
a(v) = 35.26° is a very effective control strategy even for eccentricities as high as
0.4. It should be mentioned that the results in Table I are derived numerically, since
the analytical prediction for the response under the optimal control, Eq. (25), yields
useful values for e€(27) only for small €; and ey and is. not capable of providing
accuracy beyond three significant digits in the most favorable case, while being in
error by as much as 0.3 in the most severe situation of Table I.

The actual trajectory resulting from the optimal strategy for €, = 0.09 is depicted
in Fig. 6. It is seen that Mars’ orbit is intercepted at about » =135° after
approximately one year. Also the inward trajectory crossing Venus’ orbit is shown.
These trajectories are obtained from the steepest-ascent results. It may be men-
tioned that the leading term in the analytical solution of the optimal strategy for
inward trajectories is equal to but opposite in sign compared to the one for the
outward ones. The first-order (in €) terms, however, are different and can be
readily evaluated by taking Ao =—1 rather than +1. These conclusions are
substantiated by the numerical results.

Finally, the optimal sail settings leading to the maximum increase in angular
momentum for a few values of initial eccentricity and solar parameter are shown in

TABLE I. Response a(2n) for Optimal Control Strategy and
for o = arcsin (3°'/?)

€oo/es 0.015 0.09 0.15
0 1.0761* 1.590 2.280
1.0760 1.587 2.258

0.2 1.0808 1.668 2.608
1.0796 1.640 2454

0.4 1.0984 1.962 4.314
1.0922 1.819 3.202

*The upper values correspond to the optimal response
while the lower ones represent the results for a = 35.26°.
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Fig. 7. The approximate analytical solution for the present case is likely to be more
accurate than the ones before (previous section) due to the fact that oy @) is
obtained for general ego, Eq. (30), leaving only the errors caused by higher-order (in
€;) terms. It may be noted that the resulting optimal control for eg =0
corresponds identically (up to first-order) to the one which maximizes a(2w), Fig. 4.
Compared to the optimal strategy for maximization of a(2w), the present control
programs are closer to the 35.26line, representing the zeroth-order approximation
of the optimal control for circular as well as elliptic orbits.

Concluding Remarks

Important aspects of the analysis and conclusions based on them can be
summarized as follows:

initial
position

FIG. 6. Actual Trajectory under Optimal Sail Setting, Showing Interception
with Mars’ and Venus’ Orbits
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FIG. 7. Control Strategies for Maximization of Angular Momentum

(i) Analytical approximate solutions for the time-dependent optimal sail setting
maximizing the total energy (major axis) or the angular momentum (latus
rectum) after one revolution are obtained from Pontryagin’s Maximum
Principle by means of a straightforward perturbation expansion of the state
and adjoint variables.

(ii) The validity of the approximate solution is assessed by means of a numerical
iteration procedure based upon the steepest-ascent method. In general, the
accuracy of the analytical solution decreases with increasing e, and
eccentricity. For values of €; as high as 0.1 and e up to 0.2, the maximum
deviation in control angle is less than 3° (which is comparable to the
expected error in maneuvering the sail).
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(iii) It is found that the optimal strategy as well as the response may vary
considerably depending on the starting point in the orbit.

(iv) Effectiveness of the optimal sail setting is compared with that of a
near-optimal constant sail orientation showing a growing divergence in
responses for increasing values of €; and egp.

(v) The optimal steering program for maximizing angular momentum stays
relatively close to the 35.26° line and coincides with the optimal sail setting
for maximizing a(2x) (in first-order) when egy = 0.
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