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A b s t r a c t - - A  simplified model for the orbital and relative motion of a tethered satellite system is presented. 
The tether acts as a light elastic string with small structural damping but without bending stiffness. Its mass is 
taken into account in the calculation of the total kinetic and potential energies of the tethered system. This 
formulation allows the inclusion of the complete gravity gradient influence on the dynamics of the system. The 
resulting three-dimensional motion is separated in the centre of mass orbital motion on the one hand and the 
relative motion of the end-bodies on the other. No restrictions on length of the tether or on mass ratio of the 
end-masses are imposed. It is found that the frequencies and amplitudes of the longitudinal tether oscillations 
are realistic as long as the tether mass is less than that of the subsatellite. 

1. INTRODUCTION 

Tethered satellite systems are natural candidates for en- 
hancing future Shuttle capabilities. They allow the de- 
ployment and retrieval of payloads down to orbits which 
cannot otherwise be considered due to high drag decay. 
Considerable potential is offered for deploying retriev- 
able payloads with experiment facilities related to mag- 
netospheric, atmospheric and microgravity sciences[l]. 
The dynamics of tethered satellite systems has received 
a great deal of interest over the last decade and at present 
fairly complete dynamical models are available. 

In the ESA contract study conducted by Kohler et 
al. [2] the tether is considered as a thin continuum having 
bending as well as longitudinal stiffness (even torsional 
stiffness is analysed). The resulting equations of motion 
are in the form of partial differential equations with the 
motion of the end-masses as boundary conditions. In- 
tegration over time is performed after introducing a finite 
difference discretisation scheme along the tether. An- 
other powerful model is presented by Misra and Modi[3] 
who also include the rotational motion of the end-bodies. 
The deployment and retrieval of the tether is far from 
straightforward (in particular the latter phase) and many 
sophisticated control procedures have been suggested, 
e.g. Kulla[4] and Spencer[5]. Many dynamical aspects 
of the tethered satellite systems, however, can be repro- 
duced with sufficient accuracy by simplified tether models. 
This is illustrated by Kane and Levinson[6] who consider 
the relative motion as a succession of taut and slack 
phases where the transition through a taut phase is mo- 
delled as an instantaneous impact with an arbitrary coef- 
ficient of restitution reversing the direction of the relative 
velocity component along the tether. In the present paper 
another simplified model is presented in which the ex- 
tended-tether phase is allowed to have a noninfinitesimal 
duration while the tether is modelled as a light elastic 

?Paper presented at the 34th Congress of the International 
Astronautical Federation, Budapest, Hungary, 9-15 October 
1983. 

string with small structural damping. No restrictions on 
the length of the tether or on the ratio of the end-masses 
are imposed. The contribution of the tether mass to the 
system's kinetic and potential energies is taken into ac- 
count in an approximate manner. The dynamics is sep- 
arated in the orbital motion of the centre of mass and 
the relative motion of the end-masses relative to the local 
frame connected to the centre of mass. The coupling 
between relative and orbital motion is incorporated through 
a full expansion of the gravity-gradient effect. The only 
simplifying assumption consists of prescribing the centre 
of mass to be moving in an arbitrary orbit within a fixed 
plane. Perturbing effects such as air drag and Earth's 
oblateness may be taken into account in a similar manner 
as done in free-flying relative motion[7] in first approx- 
imation. 

2. FUNDAMENTAL ASPECTS OF TETHERED 

SATELLITES MODEL 

A three-dimensional tethered satellite configuration in 
orbit is considered. The end-masses are referred to as 
station and probe, i.e. idealised point-masses with po- 
sitions r,  and ~ in the inertial X, Y, Z reference frame 
whose origin coincides with the centre of attraction. In 
our model it is assumed that the tether cross-section is 
sufficiently thin that bending and torsional stiffness can 
be neglected. Furthermore, inertial and perturbing forces 
acting along the tether are ignored. Under these as- 
sumptions the tether can be considered as a light elastic 
string capable of storing axial strain energy. For the 
purpose of evaluating the relative motion of the tethered 
probe with respect to the station the contributions of the 
tether mass to the system's potential and kinetic energies 
will be taken into account which results in a two-lumped- 
masses model for the tethered satellite dynamics. The 
model assumes that at all times the tether mass is dis- 
tributed uniformly along the line connecting station and 
probe, i.e. along the vector r = ~ - rs in Fig. I. This 
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This result can be simplified by expressing the velocities 
v~ and v_.p in terms of the velocity of the centre of mass, 
i.e. v~ = (v, + xvj) /(1 + K), and the relative velocity 
vector v = v__p - v,: 

V, = V c -- KV/ (1  -4- K), 

v~ = _v, + _v/(l + s:). (3) 

The total kinetic energy expression in eqn (2) takes now 
the very compact form: 

T = ~ my: + ~ (fn - m,/6)v 2, (4) 

Fig. 1. Geometry of tethered satellite system. 

simplification appears sufficiently realistic as long as the 
tether is stretched. In the case when the tether is slack 
there may at times be significant deviations between 
actual and assumed mass distributions. Nevertheless, the 
kinetic and potential energies calculated on this basis 
should be representative for the actual values in a mean 
sense. Furthermore, the assumed mass distribution is the 
only practical one apart from going into the detailed 
dynamics of the tether mass elements. 

2.1 Position of  centre o f  mass 
Under the assumptions stated above the centre of mass 

position _r~ within the inertial frame is obtained by in- 
tegrating the contributions of the tether mass elements 
along the vector r as follows: 

f0 
1 

rc = {m~rs + m~, D + m, (r_s + sr) ds}/m 

= {r, + Kr~}/(1 + K), 

where m is the total mass and ff~ is the so-called "reduced 
mass"  of the tether system: 

7n = (rap + m,/2)(m,  + m , /2 ) /m  
= Km/(1 + x) 2. (5) 

The former term in eqn (4) represents the kinetic energy 
of the motion of the centre of mass whereas the latter 
term describes the motion of the system around the centre 
of mass. The result of eqn (4) contains a number of 
interesting special cases (e.g., a rotating thin rod in orbit) 
which allow us to confirm its validity. 

2.3 Total gravitational potential energy 
The total gravitational potential energy consists of the 

contributions of station, probe and tether. The latter is 
obtained by integration over the line connecting the probe 
and station. The position vectors of station and probe 
expressed in terms of the position vector of the centre 
of mass of eqn (1) and the relative position vector r = 

- rs are given as follows: 

with 

x = (rap + m, /2 ) / (m,  + m, /2) .  (1) 

Here, m s, mp, m, represent the masses of station, probe 
and tether, respectively, whereas m stands for the sum 
of these masses. The parameter a: denotes the mass-ratio 
of the two lumped masses. For a typical tether the mass 
density is of the order of I kg /km so that the tether mass 
would usually be less than any of the end-masses. 

2.2 Total kinetic energy 
In order that the assumed system configuration is con- 

served as time progresses, it is obvious that the velocity 
of the modelled tether mass elements must vary linearly 
in the range from v, to v~ along the line connecting the sta- 
tion and probe: _v(s) = (1 - s)v, + s ~  for 0 < s < 1. 
The total kinetic energy is obtained by integrating the 
contributions of the tether elements along the vector r :  

1 
T = ~ ( m ,  + m,/3)  v~ + 

1 1 
(mp + m,/3)  v~ + ~ m, (%, v,). (2) 

r ,  = r , . -  Kr/(1 + K), 
- - - ( 6 )  
r ,  = rc + _r/(l  + x) .  

Under the assumption of uniform mass distribution on 
the line connecting probe and station the position vector 
of a tether mass element can be written as: 

r (s) = r,, + sr ,  

- K / ( 1  + K) < s < 1/(1 + J¢). (7) 

The total gravitational potential energy of the tethered 
satellite system is given by the expression 

V~ = - l t { m , / G  + mp/rp + m, f ds/lr, + srl}, (8) 

where/~ is the central body's gravitational parameter and 
the integration interval of s is given in eqn (7). In order 
to obtain an explicit expression, one makes use of the 
expansion in terms of Legendre polynomials P;: 

It,. + srl -I = rc '11 + 2 ( - s r / r c ) ;P j (~ ) ] ,  
j=l  

= (r,., r)/(r,.r). 
(9) 
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Similar expansions can naturally be used for 1/r, and frequency ranges from about 10-100 times the orbital 
1/rp. After integration over s and rearrangement of terms frequency. As can be seen from eqns (12) and (13) the 
using the definition of K in eqn (1) the resulting potential frequency increases with decreasing tether length and 
energy can be expressed in the form: decreasing reduced mass. 

V s = - (,u/re)[1 + 2 Mj(r/r,)JPj(~)], 
j = l  

with 

1 
Mj = ~{(2m - m,)[K ~ + K ( - I ) ' ]  - m,(/ - 1) 

X [K j+l "JF ( - - 1 ) ) ] / ( j  "t- 1)}/(1 + t¢) j+'. (10) 

It is seen that the coefficient M~ vanishes which is due 
to the definition of the centre of mass as given in eqn 
(1). The first few nonvanishing terms can be simplified 
considerably when expressed in terms of the reduced 
mass fit = x m / ( l  + x) 2 and m,: 

M2 = fit - m,/6;  
(11) 

M~ = (K - l)(fit - m,/4) / (1  + K). 

It is of interest to note that M2 coincides with the mass- 
coefficient multiplying the relative velocity component 
of the kinetic energy expression in eqn (4). In the case 
when a: -- 1, i.e. mp = m~, all odd coefficients Mj in 
eqn (10) will vanish. 

2.4 Strain energy o f  tether 
Because of the underlying assumptions of the present 

analysis the only structural potential energy to be taken 
into account is the strain energy related to the axial 
extension of the tether. In the case that the tether can be 
assumed to be uniformly deformed (i.e. the displacement 
of any reference point on the undeformed tether is pro- 
portional to its distance from the attachment point) the 
strain energy of the tether takes the same mathematical 
form as the potential energy of a massless spring: 

1 
Vs = -£ k (r - l ) 2 ;  k = AE/I .  (12) 

z 

Here, A and / are the cross-sectional area and length of 
the undeformed tether whereas E stands for the tensional 
elasticity modulus of the tether material. During the in- 
tervals when the tether is slack the strain energy should 
be taken zero, i.e. V, = 0 for r < 1. The frequency of 
the axial oscillations of the corresponding free mass- 
spring system would be given by: 

¢o = [k/(fit - m,/6)] j'2, r > /; 
(13) 

~ = 0 ,  r < l ,  

where the effective reduced mass appearing here also 
takes account of the effect of tether mass on the axial 
frequency. 

For typical tether materials (e.g., Aramid) with a lon- 
gitudinal stiffness A E  in the neighbourhood of 104N and 
a typical tether configuration with l in the range of 10- 
100 km and fit from 100-1000 kg the tether's axial 

2.5 Structural damping o f  tether 
Due to the internal structural friction of the tether 

material, strain energy is dissipated and successive am- 
plitudes of the longitudinal extensions will decay slowly. 
This effect is known as hysteresis damping and may be 
described in a quantitative mathematical form by intro- 
ducing an "equivalent" viscous damping phenomenon. 
The equivalence is based on the fact that the viscous 
damping coefficient is taken such that the corresponding 
amplitude decrements are identical. In the present ap- 
plication the structural damping of the tether can there- 
fore be described by means of Rayleigh's dissipation 
function for viscous damping: 

1 
F = -£ dk 2 = (fit - m,/6)@gk 2, (14) 

z 

where ~ is the damping factor (relative to critical damp- 
ing) and ~o is the free axial frequency of eqn (13). In 
the case that r < l the damping vanishes together with 
co. The damping factor is not more than a few percent 
for tether materials under consideration. 

3. EQUATIONS OF MOTION OF TETHERED SYSTEM 

The equations of motion of the tethered satellite sys- 
tem are to be derived from the fundamental energy 
expressions derived above. It is important to recognise 
that the complete motion of the tethered system consid- 
ered here is described by the vectors r,,, v, and r ,  v since 
the position and velocity vectors of both station and probe 
can be expressed in these quantities as shown in eqns 
(3) and (6). 

3.1 Motion o f  the centre o f  mass 
The actual motion of the centre of mass is extremely 

complicated if all perturbations acting on the tether sys- 
tem are to be considered. The assumption on the position 
and velocity vectors of the centre of mass mentioned 
above implies that its acceleration is given by 

[c = ([ ,  + K ~ ) / ( 1  + K) 

= -~[~ / r~  I1 + O(r2/r~)] + ( F ,  + ~ , ) / m .  
(15) 

Here, Fs and ~ represent the perturbing forces acting 
on the station and probe taken as lumped masses m~ + 
m,/2 and mp + m,/2 .  The form of eqn (15) suggests 
that the centre of mass can be considered to be moving 
in a perturbed orbit with instantaneous orbital plane de- 
fined by the osculating _re and i'c vectors. The essential 
advantage in considering the centre of mass (rather than 
say the station) as reference for the relative motion is 
based on the fact that the resulting restoring and damping 
forces acting along the tether axis have no effect on the 
acceleration of the centre of mass as can be seen from 
eqn (15). Of particular interest is the evolution of the 
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local x, y, z reference frame with x, y axes along the 
local vertical and horizontal of the centre of mass and 
the z-axis normal to its orbital plane. (Fig. 1). The motion 
of this frame with respect to inertial space is described 
by the rotation vector ¢,. which has a small component 
along the instantaneous x axis due to the out-of-plane 
"perturbing" force component of eqn (15). The axial 
tether forces do not contribute to this effect and the 
gravity gradient influence in this regard is negligibly 
small when r < < r, so that mainly external perturbations 
(e.g. oblateness) can be responsible for orbital plane 
changes. In the present analysis the orbital plane of the 
centre of mass is considered fixed in inertial space so 
that the rotation vector i,,. is pointing along the local z 
axis. This means that the motion of the centre of mass 
can be described by only two generalised coordinates, 
i.e. the polar coordinates r, and v,.. 

3.2 Equations o f  motion 
The relative motion with respect to the local frame 

connected with the centre of mass is described most 
conveniently by the generalised coordinates r, ~b and V-'. 
The range r is the relative distance between station and 
probe whereas ~b and ~ are the in-plane and out-of-plane 
Euler angles describing the orientation of the vector r 
in the local frame (Fig. 2). After expressing the relative 
velocity v in terms of the chosen coordinates the kinetic 
energy expression of eqn (4) becomes: 

1 1 
T = ~ m ( k ~  + r~f~) + ~(Fn - m, /6)  

× [kz + rZ(u: + rZ(9,, + ~)z cosZq/]. 
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(16) 

The total gravitational potential energy given in eqn (10) 
is already expressed in the right form except for ~ which 
equals cos~ cos~b. The five equations of motion follow 
now from the Lagrange formalism taking account of the 
dissipation function of eqn (14) and the generalised per- 
turbing forces Qj: 

f, - r,.i'~ + (,u/r~) II + ~ (j + 1) ( M J m )  
j 2 

× (r/r,)JPj(~)] = Q, /m,  
d 

[mr;~i,, + (r~ - m,/6)r2(i,,. + 6)cos ' -~]  = O,, 

i ~ - r [~  2 + (~ + ~,)2c0s2~,] + 2(~/" + oJ 2(r - I) 

= QflM2 + ( l z / r ~ ) ~ j  (M/M~_)(r/r,)J~'Pj(~), 
3 2 

+ V', + 2(6 + i,,)(/'/r - ~tan~,) 
= Q J M z  - (p/r~)(sindp/cosdp) 

(Mj/M2)(r/r,.)J -Pj (~), 
/ -  2 

~/ + 27~/r  + (~ + i~,)2sin~ cos~' 
= Q~/M~ - (It/r~) sin~ cosq5 

j 2 r ~ (M/M,_)(r/r,) e~(~). (17) 
i 2 

These equations contain the complete expansion of 
the gravity-gradient perturbing effects on all coordinates. 
The second equation expresses the conservation of an- 

orbit probe \ ~1  x ~ 

y ~  c e n t e r  o f  m a s s  

,ooa, / N .  
coordinate / I  \ \  
frame / I  '=" 

i / /  I statiOn 
Z Earth 

Fig. 2. Visualisation of Euler angles ~b, ~,. 

gular momentum in the absence of external torques. It 
is seen that orbital momentum and "relat ive" momen- 
tum can be exchanged. In the case ~, = +-n/2 a sin- 
gularity in the equation for q5 appears as it becomes 
undefined and a different form of the equations should 
be used. As this case corresponds to a hypothetical sit- 
uation no difficulties are expected in most applications. 
In the planar case, ~, and ~' vanish and the equations of 
motion become much simpler. Another important special 
case occurs when the tether length is much smaller than 
the orbital distance so that terms of order (r/r,) 2 can be 
ignored. In that case, the centre of mass radial motion 
can be considered uncoupled from the tether's gravity- 
gradient influence and the tether's angular momentum 
can be considered negligible with respect to the orbital 
momentum. The tether dynamics for small r/r,  and in- 
plane motion is described by: 

/~ _ r( 6 + ~,)2 + 2¢oJk + 602(r - -  1) 
= Qr/M 2 + flr(3cos2~ - l)/r~, 

+ 2(6 + 9,.)k/r + ~, = Q~ /M,  
- 3/lsin (bcos~b/r~. (18) 

These simplified equations illustrate that for small var- 
iations in the range r the in-plane oscillations due to 
gravity-gradient effects are essentially governed by the 
familiar nonlinear pendulum equation. Also it is seen 
that deployment (i.e. k > 0) leads to damping of the in- 
plane oscillations whereas retraction (i.e. /" < 0) results 
in negative damping which may cause instabilities. Fur- 
thermore, it is found that for small in-plane angle and 
rate the frequency of the axial motion under tension is 
approximately (m2 _ 3~)~,2 where a near-circular orbit 
is assumed. This means that the orbital motion tends to 
reduce the axial tether frequency in this case. In order 
that the tether's stiffness is able to withstand the gravity- 
gradient pull ~ must be larger than ~ times the orbital 
frequency. After transition from taut to slack phase, a 
fully different dynamic behaviour of the system appears 
as it is essentially moving under the free gravitational 
influence which tends to drive the masses apart in most 
cases. 

4. DISCUSSION OF RESULTS 

The validity of the approximate tether model has been 
evaluated by comparison with the continuum model of 



Motion of a tethered satellite system 

Kohler et al. [2]. In their first example (Chap. 6) a Shuttle 12 
orbit with perigee and apogee distances of 200 and 1000 range ~ ^ , 

10 
km is considered. The mass of Shuttle and probe is taken (kin) [ l l ] l ~ J  
as 1@ and 200 kg. The tether has an undeformed length 8 
of 100 km and mass density of 1 kg/km. Its longitudinal l ~ • v 
stiffness is taken as AE = 1500 N. Initially the Shuttle 8 / is at perigee and the tether is stretched downwards along 
the local vertical with a strain of 7%. The resulting 4 
relative motion consists of a low frequency (once per 2 
orbit) oscillation due to gravity-gradient variations in- 

duced by the Shuttle's orbital eccentricity. Superimposed O 0.5 1 
on this motion is a higher frequency (about 8 times per 
orbit) component due to the axial oscillations of the 
tether. The amplitudes of the oscillations are of the order 
of 2.5 and 0.4 kin, respectively, so that the tether remains 
under tension. The frequencies of the relative motion 
oscillations are predicted correctly by the present model. 

The large amplitude variations are identical to within 
a few percent but the small amplitude of the high-fre- 
quency motion is consistently too low. This is caused 
by the fact that the tension acting on the probe is slightly 
oversized in the near-equilibrium situation of axial re- 
storing and gravity gradient forces of the present example. 
Nevertheless, the trends in the ratios of the successive 
maximum and minimum deflections are completely pre- 
served. The extrema of the tether tension over the first 
orbit are predicted as 111 and 63 N which may be com- 
pared with the extrema of the averaged tension along the 
tether of reference [2] of 113 and 56 N. Naturally the 
reliability of the high-frequency amplitude prediction 
should be expected to deteriorate further when the tether 
mass increases with respect to that of the probe. 

Finally, an illustration of a successful passive de- 
ployment of a tethered satellite is given in Fig. 3. In this 
case, oblateness and air drag perturbations acting on both 
end-masses are taken into account. Because of the rel- 
ative dominance of the tether forces the effects of these 
perturbations (even for high exospheric temperature and 
large difference in ballistic parameters of probe and sta- 
tion) on the evolution of the range are not very pro- 
nounced and could hardly be observed on the scale used 1. 
in Fig. 3. 

In the results shown, the probe is released with a 2. 
relative velocity of 2.8 m/sec in a direction opposite to 
the Shuttle's velocity vector. The initial impulse has been 3. 
chosen on the basis of the Clohessy-Wiltshire free rel- 
ative motion relations such that the 10 km long tether 

4. 
becomes taut for the first time a little before it would 
start reversing its motion. A damping of 3% is taken 
which leads to full deployment after about 2.5 orbits. 5. 
The subsatellite oscillates downwards from the Shuttle 
within an angle of about 30 ° from the local vertical. 6. 
These oscillations are hard to damp passively. The max- 
imum tension occurs during the f'trst stretching and amounts 7. 
to about 105 N. Because of its heavy mass the Shuttle's 

211 

~,AAx . . . .  - -  

I Vvvv~Iv v" 

m s , m p :  1 0 5  , 2 0 0  
e , i  : 0 2 8 . 5  ° 

a l t .  : 4 0 0  
t e t h e r  k m  

length  : 10  
damplng : 0 .03  

1.5 nr of o rb i ts  3 

Fig. 3. Evolution of range under passive deployment to local 
vertical. 

orbital motion is hardly affected by the tether forces: its 
radial distance changes by just a few tens of meters under 
this effect. Of similar magnitude is the amplitude of the 
out-of-plane oscillations induced by the differential 
oblateness perturbations on the two end-masses. 

5. CONCLUSIONS 

The simplified model presented here should be useful 
in the prediction of tethered satellites relative motion as 
well as in the assessment of the dynamical interaction 
with the orbital motion. In particular, the feasibility of 
passive deployment schemes and the maximum loads 
acting on the tether material can be predicted with suf- 
ficient accuracy in many applications. Since a full grav- 
ity-gradient expansion is included in the model full ac- 
curacy is retained also for long tethers. In cases where 
the tether mass is substantial relative to the end-masses 
degradation of the accuracy of the high-frequency am- 
plitude prediction in a near-equilibrium situation should 
be expected. 
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