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The paper presents a practical spin-axis attitude determination approach based on the Tanygin–Shuster

algorithm. The technique is illustrated by means of sensor measurement data originating from two satellites with

very different orbit and attitude characteristics. The most appropriate data intervals are identified using criteria

based on measurement sensitivities. A minimum-variance technique is formulated for establishing the Earth aspect

angle from the measured chord angles. The chain of covariance transformations from the fundamental sensor

measurement errors to the final attitude error is presented. The unit-vector normalization technique, which is an

inherent part of the Tanygin–Shuster method, is found to be beneficial for the stability of the attitude determination

results under unknown biases, especially in cases in which only a subset of the measurement angles are available.

Introduction

S PIN-STABILIZATION offers a straightforward, cost-effective,
as well as robust attitude control concept for many satellite

mission applications. A combination of sun and Earth sensors is
often used to provide the two independent reference directions
required by the attitude determination algorithms. The determination
of the spin-axis attitude orientation is usually achieved by the
application of a batch least-squares estimation method using the
available sensor measurements [1].

This paper illustrates the practical application of the Tanygin–
Shuster (T-S) algorithm [2] for spin-axis attitude estimation. This
method is based on a linear measurement model for the functional
relationship between the sensor measurements and the spin-axis
attitude and includes zero-mean Gaussian measurement noise. It
delivers the maximum-likelihood estimate of the spin-axis attitude
that minimizes the sum of the weighted squares of the measurement
residuals.

A unique and valuable aspect of the Tanygin–Shuster algorithm is
the manner in which the unit-vector constraint for the spin-axis
attitude orientation is incorporated. The application of Lagrange’s
method ofmultipliers leads to a straightforward iteration technique to
determine the multiplier as well as the resulting unit-vector attitude
estimate.

This study employs actual sensor measurements from two
satellites with very different orbit and attitude characteristics. The
first application uses data generated by the CONTOUR satellite [3]
near the end of its Earth-phasing orbits about two days before its ill-
fated injection into a heliocentric trajectory on 15 August 2002.
CONTOUR’s phasing orbits have unique characteristics [4], for
instance, the perigee and apogee distances are 200 km and
116,000 km, respectively, and the orbital period is almost 42 h.

CONTOUR’s Earth-sensor pencil beams have simultaneous Earth
coverage over the altitude range from about 50,000 to 65,000 km.
These jointcoverage intervalsstartatabout36hfromperigee (i.e., after
the apogee passage). The spin axis is oriented close to the direction of
theperigeevelocityvector.The specificmountingsof thepencil beams
at60and65degcausetheEarthaspectangle(i.e., theanglebetweenthe
spin axis and the spacecraft-to-Earth direction) to decrease fromabout
65 to 58 deg during the sensor coverage interval [3].

The second set of sensor measurements originates from the
METEOSAT Second Generation (MSG-2) satellite [5] during its
near-geostationary drift phase in December 2005. The METEOSAT
meteorological satellites have a spin-axis attitude orientation that
points close to the orbit normal. Therefore, the Earth-sensor pencil
beams have uninterrupted coverage throughout the orbit and the
Earth aspect angle remains close to 90 deg, usually within a fraction
of a degree.

Thefirst task in the sensor data processing concerns the selection of
appropriate data intervals based on our understanding of the data
quality. This involves the assessment of the variations of the
measurement sensitivities during theEarth-sensor coverage intervals.
Singularities in the measurement functions occur at times when the
partial derivatives of the Earth aspect angle with respect to the
measured half-chord angles approach infinity. In the vicinity of these
singularities, the measurement errors are magnified enormously
when calculating theEarth aspect angle. Therefore, the elimination of
measurements in the vicinity of these singularities enhances the
quality of the resulting attitude estimate.

The input measurement covariances are established from the
specified noise characteristics of the sensor measurements. In
practice, thealgorithm’sperformance isnotverysensitive to thevalues
of the noise as long as they are “realistic.”Amore serious challenge is
presentedbytheunknownbiasesin themeasurementdata[6].Thebias
effects are clearly visible in the measurement residuals and they are
different for the two selected satellite applications.

The practical implementation of the T-S algorithm for spin-axis
attitude determination is relatively straightforward. Only a few
seconds of MATLAB® execution time are needed for data intervals
of a number of hours. The sensor measurement data may contain any
combination of sun aspect angles, Earth aspect angles, as well as
sun–Earth dihedral angles. A difficult issue in spin-axis attitude
determination is the derivation of the Earth aspect angle from the
half-chord-angle measurements. Aminimum-variance technique for
the calculation of the Earth aspect angle will be presented here. The
results show that the algorithm performances are different for the
two satellites because of the different manifestations of the relevant
biases (mainly caused by variations in the Earth’s infrared radius).

Concerning the unit-vector normalization, a few interesting
performance characteristics have been observed. In particular, in
cases in which only two of the three measurement angles are used,
the observability of the attitude vector is weakened and the perfor-
mance of the attitude determination algorithm degrades under the
influence of the unknown biases. The application of the unit-vector
normalization procedure shows significant benefits in this case
because it forces the attitude estimate closer to its actual direction.

Finally, we draw attention to a recent comprehensive technique for
spin-axis attitude determination proposed by Markley and Sedlak
[7]. They use an Extended Kalman Filter with a seven-parameter
state vector based on angular-momentum properties and illustrate its
practical implementation for a few NASA missions.
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Summary of Tanygin: Shuster Estimator

The T-S attitude estimation technique [2] considers a set of N
measurement vectors yk generated at discrete, but not necessarily
equidistant, instants of time tk (k� 1; . . . ; N). The unknown spin-
axis orientation is represented by the unit vector ẑ where the caret
symbol denotes a unit vector. The functional relationship between
the measurements yk and ẑ is described by the linear system of
measurement equations:

y k �Hkẑ� vk �k� 1; . . . ; N� (1)

The measurement noise vector vk is assumed to be modeled by a
zero-mean white Gaussian process with measurement covariance
matrices Rk � Efvk vTk g.

Themaximum-likelihood estimate ẑ� for the attitude unit vector is
the one that minimizes the cost function J�ẑ� defined by

J�ẑ� � 1

2

XN
k�1
�yk �Hkẑ�TR�1k �yk �Hkẑ� (2)

This cost function can readily be rewritten in the form

J�ẑ� � J0 �GT ẑ� 1
2
ẑTFẑ (3)

with

J0 �
1

2

XN
k�1

yTkR
�1
k yk (4a)

G ��
XN
k�1

HT
k R
�1
k yk (4b)

F�
XN
k�1

HT
k R
�1
k Hk (4c)

The scalar J0 � J�z� 0� is independent of the attitude vector. The
column vector G is the gradient of J�z� at z� 0, and F is the
symmetric Hessian matrix of J�z� at z� 0. The quantities G and F
represent the individualmeasurements and covariances, respectively.
The formulation in Eqs. (3) and (4) lead to a compact representation
of the estimation problem at hand.

When we ignore the unit-vector constraint, we can readily
establish the unconstrained attitude vector zuc (which, in general, is
not a unit vector) that minimizes the cost function J�z�:

z uc ��F�1G (5)

We assume here that the matrix F is nonsingular, so that the inverted
matrix is well defined.

In the case in which we take account of the unit-vector constraint,
the Lagrange multiplier method may be used. An iteration technique
can be applied for calculating themultiplier�. Startingwith i� 0 and
�0 � 0, the iteration scheme for i� 1; 2; . . . proceeds as follows [1]:

Di � �F� �iI3�3��1 (6a)

z i ��DiG (6b)

�i�1 � �i �
�1 � zTi � zi�
2�zTi Dizi�

(6c)

It can be seen that z0 � zuc as expected. In most cases, only one or
two iterations are needed to establish the unit-vector attitude estimate
ẑ� with sufficient precision. The expressions for the covariance
matrices of the unit vector ẑ� can be found in [1].

Measurement Equations for Spin-Axis Attitude

Geometrical Background of Sensor Measurements

Figure 1 shows the geometry of the sun and Earth unit vectors S
andE and the spin-axis attitudeZ. (In the rest of the paper, we denote
the attitude unit vector by Z, without caret). A typical V-slit sun
sensor for spinning satellites has a vertical and a skew slit. The sun’s
crossing times over these slits are measured by silicon photo-
detectors. Successive vertical slit crossings provide the spin-rate
measurements. Successive crossings of the vertical and skew slits
produce the sun aspect angle # (Wertz [8], Sec. 7.1.1). The angle # is
the most common attitude measurement for spinning satellites and
represents the angle between the spin axis and the sun direction (see
Fig. 1):

#� arccosfZ � Sg (7)

The typical Earth sensor for spinning satellites has two static
pencil beams that are oriented at the angles�i (i� 1, 2) relative to the
spin axis (Fig. 1). The sensor outputs are produced by bolometer
detectors measuring the Earth radiation in the CO2 band of the
infrared part of the spectrum. This band is selected because of its
limited radiance variability under seasonal and weather influences
(Wertz [8], Sec. 4.2).

The instants at which the Earth-sensor pencil-beam detectors cross
the space/Earth (S/E) and Earth/space (E/S) boundaries are
established by onboard signal processing. These crossing pulses
represent the fundamental Earth-sensor measurements for downlink
in the telemetry data. With our knowledge of the spin rate, we can
express these pencil-beam crossing pulses in the half-chord angles �i
(i� 1, 2). These are the fundamental Earth-sensor measurement
angles to be used by the attitude determination algorithms. The
spherical geometry in the triangle formed by the vectorsZ andE and
the directions of the S/E or E/S pulses (see Fig. 1) produce the
relationship between the measured half-chord angles �i (i� 1, 2),
the Earth aspect angle �, and the apparent Earth-radius angle �
(Wertz [8], Eq. 11.7):

cos�i cos�� sin�i cos �i sin�� cos � �i� 1; 2� (8)

The angle �� arcsin�RE=r� represents the angle of the Earth’s
circular radiusRE seen by the satellite at orbital distance r. The Earth
aspect angle � is defined as the angle between the spin axisZ and the
spacecraft-to-Earth unit vector (or simply the Earth vector)E shown
in Fig. 1:

���� � arccosfZ � E���g (9)

The Earth vectorE points opposite to the instantaneous orbital radius
vector and rotates along with the satellite’s orbital phase angle �. Its
evolution is known from orbit determination.

Figure 2 shows an example of the (simulated) half-chord angles �i
(i� 1, 2) as a function of the Earth aspect angle. These results
represent the nominal half-chord angles during the final part of

Fig. 1 Geometry of sun, Earth, spin axis, and measurements #, �,
and �.
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CONTOUR’s phasing orbits [3]. The implicit relationship in Eq. (8)
represents the starting point for calculating the Earth aspect angle �
from the measured half-chord angles �i. An explicit analytical result
for the Earth aspect angle as a function of �1 and �2 is given in Eq. 28
of [5] with validity over the interval during which both pencil beams
have simultaneous Earth coverage. The result in [5] is useful for a
geostationary satellite with continuous Earth-sensor coverage (i.e.,
spin-axes orientation close to the orbit normal). Here, we deal with
elliptical orbits and short Earth-sensor coverage intervals.We present
an approach that is more suitable for the present application and also
for the subsequent covariance analyses.

The best conditions in terms of the resulting attitude determination
accuracy occur when the pencil beams scan the so-called midlatitude
regions of the Earth corresponding to latitude bands between about
10 and 40 as well as �10 and �40	. It should be noted that the
concept of “latitude” used here refers to the characteristics of the
pencil-beam scans and is not necessarily identical to the familiar
geographical Earth latitude. The combined midlatitude regions for
both pencil beams under the nominal injection attitude conditions
would correspond to Earth aspect angles in the range from about 61
to 64	 as shown in Fig. 2. The results in Fig. 3 show that the

sensitivity of the Earth aspect angles to the chord-anglemeasurement
errors is below 1 in this region.

Determination of Earth Aspect Angle

We write the implicit Eq. (8) in a different form to facilitate the
extraction of the Earth aspect angle �:

bi cos �i cos�� bi sin �i sin�� cos � �i� 1; 2� (10)

with the auxiliary functions bi and �i defined as

bi �
��������������������������������������
1 � �sin�i sin �i�2

p
�i� 1; 2� (11a)

�i � arctanftan�i cos �ig �i� 1; 2� (11b)

Each of the pencil beams can be seen to produce its own two Earth-
aspect-angle solutions:

�
i � �i 
 �i �i� 1; 2� (12a)

with

Fig. 2 Evolution of half-chord angles �i and Earth-radius angle � (CONTOUR).

Fig. 3 Evolution of the sensitivity functions di (i� 1, 2) over combined coverage interval.
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�i � arccosf�cos ��=big �i� 1; 2� (12b)

This result is useful for interpreting the behavior of the half-chord
angles �i as functions of the Earth aspect angle �. In particular, when
the angle �i vanishes, we find �



i � �i 
 � from Eqs. (11) and (12).

These are the extreme Earth aspect angles that correspond to the start
and end of the Earth-sensor coverage interval. On the other hand,
when the angle �i in Eq. (12b) vanishes, the two �



i angles coincide

with the same value ��i � ��i (with different values for the two pencil
beams i� 1, 2) and we have b�i � cos ��i . The expression in
Eq. (11a) shows that the half-chord angles at these locations are
��i � arcsinf�sin��i �= sin�ig, i� 1, 2.

With the help of Eq. (8) we can show that the specific Earth aspect
angles ��i , i� 1, 2, correspond to the locations where the half-chord
angles �i reach their stationary or extreme values as functions of the
Earth aspect angle, that is, @�i=@�� 0 at �� ��i , for i� 1, 2, while
keeping the Earth-radius angle � fixed. These two singularities are
shown inFigs. 2 and3 for eachof the twopencil beams. It is important
to note that the extremes of the two chord angles as functions of the
Earth aspect angle, that is, �i��� with i� 1, 2, are in general not
identical to the locations where the pencil beams scan the Earth at its
maximumwidth. This is because the evolution of the chord angles is
also affected by the variations in the apparent Earth-radius angle.

For points away from themaximum chords, a particular value of �i
may correspond to two Earth aspect angle values �
i , which is
evident fromFigs. 1 and 2. Thegeometry in Fig. 1 indicates that��i in
Eq. (12a) corresponds to scans below the center of the Earth’s disk
and the solution ��i refers to scans above the Earth’s center.

At the start and end of the pencil-beam coverage intervals, where
�i � 0 (i� 1, 2), we find from Eqs. (11a) and (11b) that bi � 1 and
�i � �i. Equations (12a) and (12b) indicate that �i � � and �
i �
�i 
 � in these cases. Figure 1 shows that the zeros of the half-chord
angles correspond to the maximum and minimum boundary values
of the Earth aspect angle.

Error Sensitivity of Earth Aspect Angle

We explore the possibility of combining the two �i solutions
produced by the two pencil-beam chordmeasurements (i� 1, 2) into
a single definitiveEarth aspect angle�. The sensitivities of the two�i
solutions to the errors of the �imeasurement angles vary significantly
under the changing geometry during the respective Earth coverage
intervals. Therefore, it is natural to use the individual sensitivity
functions as criteria for the selection of the weights for the two �i
solutions. Such a technique offers the possibility to minimize the
variance of the resulting � solution (at each point in the combined
coverage interval) through the appropriate choice of the weights.

The sensitivity relationships of the variations in the Earth aspect
angle�iwith respect to changes in themeasured half-chord angles �i
follow from Eq. (8):

di �
@�i
@�i
� gi
hi

�i� 1; 2� (13a)

) ��i � di��i �i� 1; 2� (13b)

Here,�x denotes the error in the variable x and the functions gi and
hi are defined as

gi � sin �i tan�i tan�i �i� 1; 2� (14a)

hi � tan�i cos �i � tan�i �i� 1; 2� (14b)

It can be seen that singularities occur, that is, di !1, when the
functions hi (i� 1, 2) vanish. These singularities correspond
precisely to the points ��i � ��i , for i� 1, 2, defined in Eq. (11b) and
addressed in the preceding section.

Figure 3 shows the evolutions of the sensitivity functions d1 and
d2, which have been established from the chord measurements over
the combined sensor coverage intervals shown in Fig. 2. The
singularities for the two chord measurements occur at the points

��i � ��i , where the half-chord angles �i are stationary as functions of
the Earth aspect angle. At these points, the chord-length mea-
surements cannot observe variations in the Earth aspect angle � and
are thus of no use for the determination of the Earth aspect angle. It
can be seen in Fig. 2 that the singularities do not coincide with the
maximum chord lengths. This is because of the influence of the
varying apparent Earth radius.

Optimal Earth Aspect Angle

The optimal (in a minimum-variance sense) Earth aspect angle
estimate �� will be established as the combination of the two
individual �i angles (i� 1, 2), which are obtained from the �i
measurements as outlined in Eqs. (10–12). When introducing the
weight w1, we can write

�� �w1�1 � �1 � w1��2 (15)

We express the error of � in terms of the half-chord-angle errors by
means of Eq. (13b):

��� w1d1��1 � �1 � w1�d2��2 (16)

The two half-chord measurements �1 and �2 originate from different
bolometer sensors and can be assumed to be independent so that the
variance of � can be expressed as

�2� � Ef����2g �w2
1d

2
1�

2
�1
� �1 � w1�2d22�2�2 (17)

We assume that the half-chord measurements are collected in the
midlatitude region shown in Fig. 2. These regions are far away from
the Earth’s rim; therefore, we may assume that the covariances of the
two �i measurements are essentially identical. Finally, we write
Eq. (17) as

�2� � fw2
1d

2
1 � �1 � w1�2d22g�2� (18)

When differentiating this result with respect to the weight w1, we
obtain the following relationship:

@�2�
@w1

� 2fw1d
2
1 � �1 � w1�d22g�2� (19)

The variance of the angle � reaches its minimal valuewhen the right-
hand side vanishes:

w1 � d22=�d21 � d22� (20a)

1 � w1 � d21=�d21 � d22� (20b)

After substituting these results into Eq. (18), we can express the
expected error �� of the Earth aspect angle � in terms of the half-
chord-angle measurement error �k:

�� �D�� (21a)

with

D� jd1d2j=
�����������������
d21 � d22

q
(21b)

The function D denotes the magnification of the standard deviation
of � relative to that of the �i angles.

Figure 4 shows the evolutions of the weighting functions wi
(i� 1, 2) and the ratioD. These results are calculated on the basis of
the predicted chord measurements within the joint sensor coverage
interval (see Fig. 2). At the start of the joint coverage interval (from
about 36.2 to 37 h since perigee) the pencil beam 2measurements are
degraded due to the vicinity of its singularity. Therefore, the higher
weights are assigned to the pencil beam 1 data, which yield the most
accurate calculation of �. Closer to the end of the joint coverage
interval (i.e., from 37.2 to 38.1 h), the situation is reversed and the
pencil beam 2 measurements carry the higher weight.

The preference of the sensor measurements shifts from pencil
beam 1 to pencil beam 2 in themiddle of the range of “good” scans in
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the Earth’s midlatitude region. The point of equal weights is at about
37.1 h, which corresponds to an Earth aspect angle of about 62.4	 in
Fig. 4. Also, the maximum error ratio (D� 1:42) occurs here, and so
the maximum Earth aspect angle error is about 40% larger than the
half-chord-angle measurement noise.

Figure 4 indicates that the most favorable conditions for the
calculation of the Earth aspect angle�would appear to occur near the
start and end of the joint sensor coverage interval, that is, at about
36.2 and 38.1 h, corresponding to Earth aspect angles of 65.6 and
57.7	, respectively. The low error is due to the theoretically excellent
sensitivity, that is, di � 0 at these locations. Unfortunately, the
corresponding pencil-beam scans are very close to the Earth’s rim
here and have relatively large systematic errors that reduce their
practical usefulness.

Optimal Sun–Earth Dihedral Angle

The geometry of the sun- and Earth-sensor measurements
produces one more independent measurement, namely, the sun–
Earth dihedral angle 	. This rotation angle is proportional to the time
interval between the sun crossing the sun sensor’s vertical slit and the
Earth sensor measuring the Earth-center crossing (Fig. 1). From
spherical geometry within the triangle formed by theS,E, andZ unit
vectors, we can establish the intricate measurement equation
between 	 andZ, which also includes the other measurement angles
# and �:

	��� � arcsinf�S �E� � Z=�sin# sin��g (22)

In practice, each of the two pencil beams produces its own sun–
Earth dihedral angle 	i (i� 1, 2). The measurements 	i are
calculated as the average value of the time intervals between the sun
crossing the sun sensor’s vertical slit and each of the pencil-beamS/E
and E/S pulses (Fig. 1). The establishment of the “optimal” angle 	
from the two independent 	i measurements is straightforward
because the relevant measurement sensitivities are essentially
identical for Earth-sensor measurements in the midlatitude range.
Therefore, the two 	i measurements may be weighted equally:

	� �	1 � 	2�=2 (23)

Establishment of Measurement Equations

We summarize the three fundamental measurement equations
established in Eqs. (7), (9), and (22) as a system of three linear
equations y �HZ:

y �
cos#
cos�

sin# sin� sin	

0
@

1
A (24a)

H �
S1 S2 S3
E1 E2 E3

�S �E�1 �S � E�2 �S � E�3

0
@

1
A (24b)

The indices 1, 2, and 3 denote the components of the respective
vectors in the geocentric inertial reference frame. As long as the
reference vectors S andE are not aligned, the system y �HZ is well
defined and the matrix H can be inverted to produce the inertial
attitude vector Z�H�1y. This represents a so-called single-frame
attitude solution because the three measurements are collected at a
single instant of time. Because the attitude vector Z should be a unit
vector, normalizationmust still be performed afterward, for instance,
by the iteration technique in Eq. (6).

In practical applications [2], a batch ofNmeasurements,#k,�k,	k
(k� 1; . . . ; N), will be collected overN spin revolutions. The system
of equations now contains N times the system in Eqs. (24) for the
three unknown components of the attitude Z and is thus
overdetermined. We add the random errors vk � ��1k; �2k; �3k�T to
each of the individual sets (k� 1; . . . ; N) of measurements yk �
�y1k; y2k; y3k�T given in Eqs. (24a), which leads to the system of N
vector equations:

y k �HkZ� vk �k� 1; 2; . . . ; N� (25)

This leads immediately to the weighted-least-squares attitude
estimate Z�:

Z � � F�1
XN
k�1

HT
k R
�1
k yk (26a)

with F�
XN
k�1

HT
k R
�1
k Hk (26b)

It may be noted that the matrix F was introduced already in Eq. (4c)
and that the expression in Eq. (26a) is equivalent to the unconstrained
estimate of the T-S algorithm established in Eq. (5).

Fig. 4 Evolution of the weighting functions w1, w2 � 1 � w1, and ratio D.
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The measurement covariance matrix Rk represents the 3 � 3
random noise of the vector yk:

Rk � Efvk vTk g �
�21 �21 �13
�21 �22 �23
�13 �23 �23

0
@

1
A
k

(27)

It can be shown that the state covariance matrix is given by

Q� Ef�Z��Z�Tg � F�1 (28)

This result allows us to express the attitude errors in terms of the
measurement errors via the matrix Rk in Eq. (27).

Calculation of Measurement Covariance Matrix

The fundamental measurements for attitude determination
purposes are the six sun and Earth sensors crossing times tj
(j� 0; . . . ; 5). The first two, that is, t0 and t1, represent the sun-
sensor crossings over the meridian and skew slits, respectively. The
times t2 and t3 denote the S/E andE/S crossings of pencil beam1with
mounting angle �1. Similarly, t4 and t5 are the S/E and E/S crossing
times of pencil beam 2 with angle �2. The random errors in the
crossing times tj are written as �tj (j� 0; . . . ; 5) with expected
values Ef�tjg � 0 and covariances Ef��tj�2g � �2j (j� 0; . . . ; 5).

Because the spin rate ! is known (from the running average of
successive meridian slit crossings), it is easy to convert the crossing
times tj into the associated rotation angles 
j (j� 1; . . . ; 5) with
reference to the sun-sensor meridian slit’s crossing time t0:


j � !�tj � t0� �j� 1; . . . ; 5� (29)

The random errors are �
j � !��tj ��t0� � �tj � t0��! with
j� 1; . . . ; 5. The spin rate follows from a large number of
measurements so that its random error may be considered negligible
in a steady-state situation (in the absence of nutation and wobbling
motion). After writing the angular errors in vector notation, that is,

��� ��
1; . . . ;�
5�T , we can express their covariance matrix in
the variances of tj and t0 with the help of Eq. (29) while noting that
the individual measurements are uncorrelated, that is,
Ef��tj�t0�g � 0 for j� 1; . . . ; 5 and k� 0; . . . ; 5:

T � Ef������Tg

� !2

�21 � �20 �20 �20 �20 �20
�20 �22 � �20 �20 �20 �20
�20 �20 �23 � �20 �20 �20
�20 �20 �20 �24 � �20 �20
�20 �20 �20 �20 �25 � �20

0
BBBB@

1
CCCCA

(30)

Next, we introduce the vector of the measurement angles
�� �#; �1; �2; 	1; 	2�T . The sun aspect angle # can be calculated
from the inclination angle (denoted by iS) between the vertical and
skew slits and the measured rotation angle 
1 (Wertz [8], Eq. 7-1):

#�
1� � �=2 � arctanfsin 
1= tan iSg (31)

Therefore, the random error �# in the sun aspect angle is found as

�#� g�
1��
1 (32a)

with : g�
1� � � sin#�
1� cos#�
1�= tan 
1 (32b)

This result loses validity when 
1 � 0, near the intersection of the
vertical and inclined slits where #� 90 deg. In this case we may
write "� # � �=2 and use the approximate asymptotic result:

�#��"���tan iS��1�
1 (33)

The half-chord angles �i and dihedral angles 	i (with i� 1, 2) are
defined by the S/E and E/S crossings of the two pencil beams:

�1 � �
3 � 
2�=2 (34a)

�2 � �
5 � 
4�=2 (34b)

	1 � �
3 � 
2�=2 (34c)

	2 � �
5 � 
4�=2 (34d)

We can write these definitions in matrix form as ���G�� with
matrix G defined by

G� 1

2

2g 0 0 0 0

0 �1 1 0 0

0 0 0 �1 1

0 1 1 0 0

0 0 0 1 1

0
BBBB@

1
CCCCA

(35)

We find the covariance matrix � of the measurement angles ��
�#; �1; �2; 	1; 	2�T with the help of Eqs. (30) and (35):

�� Ef������Tg �GTGT � !
2

4

4g2��20 � �21� 0 0 4g�20 4g�20
0 �22 � �23 0 �23 � �22 0

0 0 �24 � �25 0 �25 � �54
4g�20 �23 � �22 0 4�20 � �22 � �23 4�20
4g�20 0 �25 � �24 4�20 4�20 � �24 � �25

0
BBBB@

1
CCCCA

(36)

For pencil-beam scans in the midlatitude region, we may assume
that the random noise in the S/E and E/S crossing times of the two
pencil beams are essentially equal so that �2 � �3 � �4 � �5. The
noise effects in these crossing times are obviously also independent of
eachother.Furthermore,weassume that the randomnoise termsof the
two sun-sensor slit crossing times are close to identical aswell, that is,
�1 � �0. Thus, Eq. (36) can be simplified further to its final form:

�� Ef������Tg

� !
2

2

4g2�20 0 0 2g�20 2g�20

0 �22 0 0 0

0 0 �22 0 0

2g�20 0 0 2�20 � �22 2�20

2g�20 0 0 2�20 2�20 � �22

0
BBBBBBB@

1
CCCCCCCA

(37)

The angularmeasurements shown in Fig. 1, that is,�� �#; �; 	�T ,
can be expressed in terms of the vector �. In particular, the Earth
aspect angle follows from theweighted combination of the individual
solutions as defined in Eq. (15). The covariance transformation is
based on the linearized transformation of the random errors ��i to
�� as established in Eq. (16), and so we have

���W�� (38a)

with
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W �
1 0 0 0 0

0 w1d1 �1 � w1�d2 0 0

0 0 0 0:5 0:5

0
@

1
A (38b)

The parameters w1 and 1 � w1 represent the weighting functions of
the Earth aspect angles �1 and �2 for the two pencil beams. The
optimal weights have been given in Eqs. (20) in terms of the
individual measurement sensitivities. The expression for the
covariance matrix of the angles � follows now as

B� Ef������Tg � !
2

4

8g2�20 0 4g�20

0 2D2�22 0

4g�20 0 4�20 � �22

0
B@

1
CA

�
�2# 0 �#	

0 �2� 0

�#	 0 �2	

0
B@

1
CA (39)

The covariance terms appearing in the right-hand matrix are defined
by the corresponding expressions in the preceding matrix. The result
in Eq. (39) shows that, under the fairly realistic assumptions spelled
out here, the Earth aspect angle measurement � is uncorrelated to
both the sun aspect angle # and the sun–Earth dihedral angle 	
measurements. On the other hand, the sun aspect angle measurement
# obviously has a nonzero correlation to the 	 measurement.

Finally, we convert �� �#; �; 	�T to the measurement
observations y defined in Eqs. (24a). The linearized transformation
matrix of the error components is given by

�y � F
�#
��
�	

0
@

1
A (40a)

with

F�
� sin# 0 0

0 � sin� 0

f� f� f	

0
@

1
A (40b)

with auxiliary functions f�, f�, and f	 defined by

f� � cos# sin� sin	 (41a)

f� � sin# cos� sin	 (41b)

f	 � sin# sin� cos	 (41c)

The final result for the covariance matrix of y follows as

R� Ef�y��y�Tg � FEf������TgFT � FBFT

�
�21 0 �13

0 �22 �23

�13 �23 �23

0
B@

1
CA (42)

The covariance elements in the matrix on the right-hand side are
defined as follows:

�21 � �2�sin2# (43a)

�22 � �2�sin2� (43b)

�23 � f2��2� � f2��2� � f2	�2	 � 2f�f	��	 (43c)

�13 ���f��2� � f	��	� sin# (43d)

�23 ��f��2� sin� (43e)

These results complete the explicit calculation of the measurement
covariance matrix R in Eq. (27). The matrix R forms the input in the
calculation of the state covariance matrixQ in Eq. (28) representing
the errors �Z� Z� � Z in the optimal weighted-least-squares
estimate of the attitude in Eq. (26a).

Discussion of Results Using Contour Data

The attitude determination technique presented earlier has been
applied using sensor data produced by the CONTOUR spacecraft
during its Earth-phasing orbits [3,4]. The data cover the 1 h
midlatitude range (Fig. 2) during the Earth-sensor interval on
13 August 2002, two days before its ill-fated injection into an
interplanetary trajectory [4]. The satellite’s spin rate was close to
60 rpm, so that the 1 h batch of data contains about 3600 points.

Measurement Angles and Residuals

Figure 5 shows the actual as well as the predictedmeasurements of
the half-chord angles. The predicted measurements are obtained by
simulations involving the reconstruction of the sensor measurements
(as in Fig. 2) based on the best available attitude estimate. The sensor
data cover the 1 h interval starting at 36.6 h from perigee. This
interval includes the midlatitude scans in between the two
measurement singularities shown in Fig. 2 and therefore provides
good-quality sensor measurements. Furthermore, the Earth sensor’s
scans are far away from the Earth’s rim where the measurement
biases of the chord lengths would become excessive.

The measurements in Fig. 5 point to the presence of significant
biases in both half-chord angles. These are mainly caused by local
and temporal variations in the Earth’s infrared horizon. Figure 6
provides a clearer view of the residuals between the actual and
expected measurements. The residuals reach the extreme value of
over 0.3	 in magnitude for the �1 residual at the start of the interval
and taper off toward the end of the 1 h interval.

Figure 7 shows the Earth aspect angles derived from the measured
half-chord angles in Fig. 5. The results designated as “Beta-1p” and
“Beta-2m” refer to the applicable individual Earth aspect angle
solutions��1 and��2 after the sign ambiguity has been resolved. They
are defined in Eqs. (12) in terms of the half-chord measurements �i
(i� 1, 2). The “Average Beta” refers to �ave � ���1 � ��2 �=2 and
represents the most straightforward estimate of the Earth aspect
angle.

The “Optimal Beta” in Fig. 7 is the minimum-variance estimate of
the� angle obtained by theweighting technique of the two individual
�
i solutions outlined in Eqs. (15–21). As expected, this estimate
gradually shifts from ��1 , which has the lower variance during the
first half of the interval, toward ��2 with the lower variance in the
second half.

Figure 8 shows the evolution of the residuals of the various �
estimates shown in Fig. 7. These residuals represent the differences
between the results in Fig. 7 (which are derived from the actual
chord-angle measurements) and the reconstructed Earth aspect
angles on the basis of the best available attitude estimate. The resid-
uals clearly show the increases in the variances of the � measure-
ments at the start and end of the interval, which are due to the
magnification of the measurement noise in the vicinity of the
singularities; see Figs. 3 and 4.

The important conclusion to be drawn fromFigs. 7 and 8 is that the
bias effects consistently dominate the random noise. The minimum-
variance � solution shows good performance in reducing the random
noise of the individual ��1 and ��2 solutions. Unfortunately, this
solution is not able to reconcile the large gap between the individual�
angles induced by the bias effects. Over the shown interval, it
gradually bridges the gap between the ��1 and the ��2 solutions. On
the other hand, the straightforward �ave solution shows better overall
performance in terms of its residuals.

Figure 9 shows the sun–Earth dihedral angle measurements 	i
(i� 1, 2) generated by the Earth sensor’s two pencil beams. The
“Optimal Alpha” represents the average of the two angles 	1 and 	2
[Eq. (23)] because there is no obvious criterion for assigning different
weights. The residuals of the three angles in Fig. 9 can easily be
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visualized after subtracting the “Predicted Alpha” shown in Fig. 9.
The residuals of the Optimal Alpha start out with a magnitude of
about 0.1	, pass through 0	 at about 36.9 h, and settle down to a
constant value of about �0:07	. Variations in the Earth’s radiation
profile, especially the north–south thermal gradient, are responsible
for the systematic errors in the crossings of the Earth’s infrared disk
measured by the Earth-sensor detectors (see also [5]).

The evolutions of the sun aspect angle measurements and their
residuals have been established as well (not shown here). The sun
aspect angle varies only a little over the 1 h interval considered, that
is, from 104.026 to 104.002	. The observed biases in the sun angle
measurements are also relatively small and the residuals staywithin a
narrow range of about 0.01	.

Attitude Determination Results

The application of the T-S attitude determination technique to the
CONTOUR sensor measurements shown in Figs. 5–9 produces the
following optimal attitude estimate �� in terms of its right ascension
(RA) and declination (DE) angles:

RA � 258:593	; DE� 29:199	 (44)

This result is less than 0.05	 in arc-length distance away from the fine
attitude determination result given in Table 2 of [3].

The averages of the absolute residuals in the sun aspect angle#, the
Earth aspect angle �, and the sun–Earth dihedral angle 	 have been
calculated by comparing the N � 3600 angular measurement sets
with their corresponding predicted values reconstructed from the
attitude estimate in Eq. (44):

�#res � �1=N��jj#j;meas � #j;predj � 0:006	 (45a)

��res � �1=N��jj�j;meas � �j;predj � 0:151	 (45b)

�	res � �1=N��jj	j;meas � 	j;predj � 0:052	 (45c)

The��res in Eq. (45b) represents the average absolute value of the
residuals shown in Fig. 8 based on the use of the Optimal Beta

Fig. 5 Measured and predicted half-chord angles.

Fig. 6 Residuals of half-chord-angle measurements.
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estimate. As wasmentioned earlier, the adoption of the Average Beta
solution would lead to a lower residual, namely, 0.088	. This is a
consequence of the detrimental effects of the biases in the half-chord
measurements; see Figs. 5–8.

Figures 5–9 indicate that the effects of the measurement biases
vary considerably over time. Therefore, it is of interest to investigate
by how much the resulting attitude estimate varies over the interval
under consideration. This approach allows us to compare the
performances in terms of residuals of these local attitude estimates
with those of the overall global estimate in Eq. (44).We recall that the
optimal estimate given in Eq. (44) originates from the maximum-
likelihood criterion in Eq. (2). It should be noted that this estimate is
not necessarily optimal under the specific distance metric defined in
Eqs. (45).

We performed a set of seven attitude determination runs over
different 0.5 h intervals contained within the 1 h interval of data
shown in Figs. 5–9. The interval for each run shifts by 5min from the

previous run, starting from 36.6 h from perigee. Thus, the first run
uses the data from 36.6 to 37.1 h and the last (seventh) run uses those
from 37.1 to 37.6 h.

Table 1 summarizes the results of the seven attitude determination
runs. The second and third columns in Table 1 provide the RA and
DE of the attitude estimates in degrees. The fourth column gives the
angular deviation, that is, the arc-length distance, of the relevant
attitude estimate from the overall optimal attitude estimate given in
Eq. (44).

The final three columns of Table 1 summarize the averaged
absolute residuals defined in Eqs. (45a–45c) in terms of the sun
aspect angle (SAA), the Earth aspect angle (EAA), and the sun–Earth
dihedral angle (SEDA), respectively.We emphasize that all residuals
in Table 1 are computed with respect to the predicted measurements
that are derived from the attitude estimate over the complete 1 h
interval, that is, the estimate given in Eq. (44). It may be noted that
each attitude estimate is optimal only within its own 0.5 h interval.

Fig. 7 Earth aspect angles derived from chord measurements.

Fig. 8 Residuals of Earth aspect angle solutions.
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Table 1 shows that all seven attitude results are less than 0.1	 in
arc length away from the overall attitude estimate in Eq. (44).
Furthermore, the resulting average value of the attitude estimates
listed in Table 1 is only 0.016 	 in arc length away from the overall
result in Eq. (44). Also, the averages of the residuals are close to the
ones of the overall estimate given in Eq. (45), which indicates that the
results are consistent. When assuming that the deviations shown in
Table 1 are normally distributed, we can calculate with a confidence
level of 98.5% that the average attitude result is less than 0.1	 away
from the unknown actual attitude orientation.

Reconstruction of Earth-Radius Biases

When focusing on the residuals of the Earth aspect angle in
Table 1, we find that they continually improve over the course of the
interval. This trend is due to the peculiarities of the residuals in the S/
E and E/S pulses. We recall that the Earth aspect angle is computed
from the half-chord-angle measurements �i (i� 1, 2) by means of
the implicit Eq. (8). For simplicity we assume that the bias in the
apparent Earth-radius angle �, which dominates all other biases, is
the only bias acting over the interval. In this case, we can reconstruct
the biases ��i (i� 1, 2) that produce the actually observed �i
measurements. After linearization of the relationship in Eq. (8), we
can express the reconstructed ��i biases in the observed ��i
residuals as follows:

��i � fsin�i sin ��i sin��= sin �nomg��i;res �i� 1; 2� (46)

where �� and ��i are the predicted measurements belonging to the
overall attitude estimate in Eq. (44) and �nom is the nominal Earth-
radius angle, all as functions of time over the relevant interval.

Figure 10 shows the evolutions of the reconstructed��i (i� 1, 2)
biases as well as their mean value over the relevant interval. As
expected, the evolutions of these biasesmirror those of the associated
half-chord angles shown in Fig. 6. Figure 10 indicates that the
maximum bias in the apparent Earth-radius angle is of the order of
0.2	. This corresponds to a bias of about 210 km in the actually
observed Earth’s infrared radius compared to the predicted radius.

It can be seen that the��1 bias is always larger in magnitude than
��2 but this difference decreases continuously over the interval.
Furthermore, fromabout themiddle of the interval, themagnitudes of
both biases show a decreasing trend. It can be understood from Fig. 1
that a discrepancy between these two biases shifts the Earth aspect
angle in proportion to themagnitude of the difference. Therefore, the
decreasing discrepancy between these two biases over the interval
considered is responsible for the continually decreasing�� residuals
in Table 1.

Discussion of Results Using MSG-2 Data

The T-S attitude determination technique was also applied to
sensor data produced by theMSG-2 satellite [5] at the end of its near-
geostationary drift phase inDecember 2005.During the one-day data
interval under consideration here, the spin-axis attitude was pointing
in a direction about 3.5	 away from the orbit normal. The spin rate
was close to 100 rpm, which leads to a volume of about 140,000 sets
of sensor measurements over the one-day interval. To limit the data
volume to a manageable size, we performed a sliding averaging
operation of the sensor measurements over 10 spin revolutions.
Therefore, the measurement sampling interval increases to about
6.7 s and the attitude determination is performed on a batch of about
14,000 data points (compared to about 3600 points for CONTOUR).

Measurement Angles and Residuals

The MSG-2 Earth sensor’s pencil beams are mounted at about 86
and 94 deg from the spin axis and provide continuous Earth coverage
during normal-mode operations in the geostationary orbit. In the case
considered here, that is, a near-geostationary orbit and an attitude
pointing about 3.5	 away from the orbit normal, the pencil beams
have continuous Earth coverage with periodic (at orbit frequency)
variations of the half-chord angles between about 4 and 9	 [5].

Fig. 9 Sun–Earth dihedral angle measurements.

Table 1 Results of attitude determination runs for CONTOUR

(all angles are in degrees)

Attitude estimate Residuals

Run RA DE Deviation SAA EAA SEDA

1 258.648 29.286 0.099 0.0060 0.228 0.039
2 258.622 29.244 0.052 0.0063 0.201 0.034
3 258.598 29.205 0.008 0.0061 0.162 0.035
4 258.577 29.172 0.030 0.0061 0.130 0.042
5 258.559 29.145 0.062 0.0065 0.105 0.052
6 258.546 29.126 0.084 0.0063 0.087 0.060
7 258.539 29.116 0.096 0.0066 0.074 0.064

Average 258.584 29.185 0.062 0.0063 0.141 0.047

St. dev. 0.041 0.064 0.034 0.0002 0.058 0.012
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Fig. 10 Reconstructed biases in apparent Earth-radius angle.

Fig. 12 Residuals of Earth aspect angles (MSG-2).

Fig. 11 Residuals of half-chord angles (MSG-2).
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Figure 11 shows the evolutions of the residuals of the half-chord
angles �i (i� 1, 2) over a one-day interval. The residuals are
relatively large although they are somewhat smaller than in
CONTOUR’s case shown in Fig. 6.Also in this case, the residuals are
mainly caused by variations in the Earth’s infrared horizon. The
largest deviations correspond to Earth sensor’s scans close to the
Earth’s rim where the half-chord angles are relatively small, that is,
below 5	. The smaller short-period ripples with an amplitude of
0.02–0.05	 are caused by satellite wobbling effects induced by
propellant imbalances between the tanks [5].

Figure 12 shows the residuals of the estimates of the Earth aspect
angles based on the half-chordmeasurements. As before, theBeta-1p
and Beta-2m results refer to the individual solutions ��1 and ��2 and
the Optimal Beta is the minimum-variance � angle obtained by the
weighting technique of the �
i solutions presented in Eqs. (15–21).
Figure 12 does not show the Average Beta estimate �ave, which can
easily be visualized as the average value of the ��1 and ��2 results.

As in the CONTOUR case, the minimum-variance estimate
gradually shifts from the ��1 solution, which has the lower variance

Table 2 Results of attitude determination runs for MSG-2

(all angles are in degrees)

Attitude estimate Residuals

Run RA DE Deviation SAA EAA SEDA

1 83.358 86.522 0.014 0.0067 0.064 0.073
2 83.202 86.521 0.023 0.0065 0.062 0.088
3 83.585 86.529 0.002 0.0064 0.072 0.077
4 84.682 86.549 0.071 0.0065 0.107 0.059
5 84.575 86.551 0.065 0.0076 0.104 0.059
6 83.618 86.533 0.006 0.0070 0.074 0.076
7 83.084 86.525 0.029 0.0076 0.063 0.091
8 82.930 86.519 0.039 0.0067 0.058 0.096
9 83.619 86.524 0.005 0.0076 0.070 0.077
10 84.461 86.539 0.056 0.0073 0.097 0.053
11 84.185 86.535 0.038 0.0071 0.087 0.065

Average 83.754 86.532 0.032 0.0070 0.078 0.074

St. dev. 0.623 0.011 0.024 0.0005 0.018 0.014

Table 3 Effect of unit-vector normalization for CONTOUR (all angles are in degrees)

Method Attitude estimate Residuals

Run EAA Unit vector RA DE Deviation SAA EAA SEDA

1 Optimal Yes 258.593 29.199 —— 0.0061 0.151 0.052
2 Average Yes 258.585 29.190 0.012 0.0043 0.088 0.049
3 Optimal No 258.655 29.232 0.063 0.0015 0.139 0.045
4 Average No 258.630 29.213 0.035 0.0015 0.049 0.045

Table 4 Effect of unit-vector normalization using only measurements #, � for

CONTOUR (all angles are in degrees)

Method Attitude
estimate

Residuals

Run EAA Unit
vector

RA DE Deviation SAA EAA SEDA

1 Optimal Yes 258.685 29.378 0.196 0.0015 0.138 0.154
2 Average Yes 258.650 29.315 0.126 0.0015 0.051 0.109
3 Optimal No 260.302 38.277 9.187 0.0016 0.044 9.878
4 Average No 257.875 25.491 3.763 0.0014 0.013 3.950

Table 5 Effect of unit-vector normalization for MSG-2 (all angles are in degrees)

Method Attitude
Estimate

Residuals

Run EAA Unit vector RA DE Deviation SAA EAA SEDA

1 Optimal Yes 83.561 86.528 —— 0.0064 0.071 0.131
2 Average Yes 82.268 86.507 0.081 0.0067 0.097 0.168
3 Optimal No 83.601 86.530 0.003 0.0064 0.072 0.130
4 Average No 82.957 86.528 0.037 0.0065 0.095 0.148

Table 6 Effect of unit-vector normalization using only measurements #, �
for MSG-2 (all angles are in degrees)

Method Attitude
Estimate

Residuals

Run EAA Unit vector RA DE Deviation SAA EAA SEDA

1 Optimal Yes 81.772 86.493 0.114 0.0066 0.060 0.184
2 Average Yes 81.185 86.481 0.152 0.0066 0.106 0.202
3 Optimal No 82.576 84.124 2.405 0.0065 0.022 0.172
4 Average No 81.905 84.341 2.191 0.0065 0.086 0.191
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during the first half of the interval, to �2, with the lower variance in
the second half. The biases have a considerable effect on the
optimal � with a maximum magnitude of the residual of about
0.15 deg. Nevertheless, the minimum-variance estimate clearly
shows a better performance than the other three estimates in
Fig. 12 by steering clear of the major biases, especially during the
second half of the orbit.

In contrast with the CONTOUR case, the optimal � estimate has
also a lower overall residual than the �ave estimate, namely,��res �
0:071	 versus��ave � 0:096	 on the basis of the definition given in
Eq. (45b).

Attitude Determination Results

The optimal attitude estimate �� in terms of its RA and DE angles
that is established from the full-day sensor measurements is

RA � 83:561	; DE� 86:528	 (47)

This result is only 0.04	 in arc-length distance away from the
European Space Operations Centre result given in [5]. The residuals,
as defined in Eqs. (45), associated with the attitude estimate in
Eq. (47) are

�#res � 0:0064; ��res � 0:071; �	res � 0:078 (48)

We performed a set of 11 attitude determination runs over 4 h
intervals contained within the full day of MSG-2 data. The interval
for each of the runs is shifted by 2 h from the previous run. Thus, the
first run uses the sensor data from 0 to 4 h and the last run uses data
between 20 and 24 h. The results are summarized in Table 2 with the
same definitions as used in Table 1. The fourth column gives the
deviation of the attitude estimate from the best overall estimate in
Eq. (47) and the results of the residuals are based on the full 24 h
interval.

The deviations between the attitude estimates listed in Table 2 and
the overall result in Eq. (47) are relatively small in view of the
significant biases. In particular, the attitude vector corresponding to
the averageRA andDE angles given in the last but one row of Table 2
is only 0.012	 in arc length away from the overall attitude estimate in
Eq. (47). Thevariations in the residuals over the 11 runs in Table 2 are
also relatively small. Furthermore, all of the residuals in Table 2 are
fairly consistent with those of the best attitude estimate in Eq. (48).
When assuming that the deviations shown in Table 2 are normally
distributed, we find with a confidence level of over 99% that the
average attitude result is less than 0.05	 away from the actual attitude
orientation.

The average values and standard deviations of the residuals in the
last two rows of Table 2 aremostly similar to those of theCONTOUR
case in Table 1. However, the average attitude deviation and the
average EAA residual are only about half the values of the values
given in Table 1. This is expected to be due to the difference in size of
the two data sets and the geometrical differences in the orbit and
attitude conditions. Furthermore, the residuals are much more
uniform in the present case and there is no clear trend over the course
of the one-day interval.

Effects of Unit-Vector Normalization

Finally, we discuss the effect of the unit-vector normalization
technique of the T-S algorithm with the help of the in-orbit sensor
data for the two selected satellites.

Results for CONTOUR

Table 3 summarizes the results for the CONTOUR data set
collected on 13 August 2002. The second column refers to the
selection of the EAA, that is, the optimal �� or the average �ave.
The third column specifies whether the unit-vector normalization
was performed or not. The remaining columns are defined as in
Tables 1 and 2 except that the deviation is calculated relative to the
attitude estimate in the first row, which is expected to be the most
precise.

The results of runs 1 and 2 are very close but the results of run 2
have smaller residuals, especially for the Earth aspect angle, which is
consistent with the results shown in Figs. 6 and 7. Runs 3 and 4 do not
use the unit-vector normalization technique but the results remain
fairly close to those in runs 1 and 2, whereas the residuals are even
lower. The latter makes sense because the optimization process is not
restrained by the unit-vector condition.

It should be noted that the four runs in Table 3 use the full set of
three measurement angles, #, �, and 	, which provides some
robustness to the attitude estimates, even in the presence of
significant biases. If the sun–Earth dihedral angle 	 measurement
were not available, the component of the attitude vector normal to the
plane formed by the sun and the Earth vector would have a relatively
large error under the measurement biases.

Table 4 illustrates the benefit of the unit-vector normalization
procedure in the case in which the sun–Earth dihedral angle is not
available. The performances of runs 1 and 2, which use the unit-
vector normalization, are within 0.20	 in arc-length distance from
run 1 in Table 3. On the other hand, runs 3 and 4, which do not use the
normalization technique, have unacceptably large errors of many
degrees.

Results for MSG-2

Table 5 summarizes the results for the MSG-2 data set with the
same definitions as in Table 3. The difference between the optimal
and average estimates of runs 1 and 2 is larger than in the CONTOUR
case but run 1 has the smaller residuals; see also Fig. 12. Runs 3 and 4
do not use the unit-vector normalization technique but the results
remain very close to those in runs 1 and 2 and also the residuals are
similar or somewhat smaller.

Table 6 illustrates the benefit of the unit-vector normalization
procedure in the case in which the sun–Earth dihedral angle is not
available. The performances of runs 1 and 2, which use the unit-
vector normalization, are within 0.16	 in arc-length distance from
run 1 in Table 5. Runs 3 and 4, which do not use the normalization
technique, have very large errors of over 2 deg, whereas their
residuals are lower than those in runs 1 and 2, as expected.

Convergence of Iterations

Finally, we summarize the convergence performances of the
normalization technique for the applicable runs in Table 7. The
numbers shown are the differences of themagnitudes of the estimated
attitude vector compared to unity, that is, jzj � 1. The performances
are excellent for the runs that use all three measurement angles for
bothCONTOURandMSG-2, that is, columns2and4.Wefindvalues
for the deviations from unity of the order of 10�6 after just one
iteration and about 10�9 after two iterations for both satellites. In the
cases in which only twomeasurement angles (# and �) are taken into
account, that is, columns 3 and 5, the convergence performance is
considerably slower, especially in the CONTOUR case.

Conclusions

The Tanygin–Shuster method for spin-axis attitude determination
has been applied to in-orbit sensor data generated by two satellites,

Table 7 Convergence performances of unit-vector

normalization technique

CONTOUR MSG-2

Iteration Three angles Two angles Three angles Two angles

0 �1:2 � 10�3 6:4 � 10�2 5:4 � 10�6 �3:1 � 10�3

1 5:4 � 10�6 1:3 � 10�2 4:4 � 10�7 1:8 � 10�5

2 1:1 � 10�10 6:5 � 10�4 2:4 � 10�9 �3:2 � 10�9

3 7:8 � 10�16 2:3 � 10�6 6:8 � 10�14 �3:8 � 10�9
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namely, CONTOUR in a highly elliptical Earth-phasing orbit and
MSG-2 in a near-geostationary orbit. The results indicate that the
method produces stable attitude estimates for both satellites even in
the presence of severe unknown biases. The unit-vector normal-
ization technique is beneficial for the stability of the attitude
determination results, especially in the case in which the dihedral
angle measurements are not used.
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