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AbstraeL The three-dimensional relative motion of a subsatellite with respect to a reference station in 
an elliptical orbit is studied. A general theory based on the variation of the relative elements, i.e. the instan- 
taneous differences between the orbital parameters of the subsatellite and those of the station, is formulated 
in order to incorporate arbitrary perturbing forces acting on both satellites. The loss of precision inherent 
in the subtraction of almost identical quantities is avoided by the consistent use of difference variables. 
In the absence of perturbations exact analytical representations can be obtained for the relative state 
parameters.  The influences of air drag and Earth's oblateness on the relative motion trajectories are in- 
vestigated and illustrated graphically for a number  of cases. 
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Additional less important  symbols are defined throughout  the text. Subscripts o, p refer to initial condi- 
tions and quantities belonging to the probe respectively while the station's parameters carry no subscript. 
The superscript- designates the derivative with respect to time. 

1. Introduction 

Subsatellites are natural candicates for future Space Lab experiments allowing the 
simultaneous monitoring of the physical environment in a large spatial region around 
the Shuttle. A detailed study on the scientific objectives and technical feasibility of an 
AMPS (Atmosphere, Magnetosphere, and Plasmas in Space) subsatellite payload 
has been carried out by ESA (Duchoissois and Dale, 1975). 

The orbital characteristics of subsateltite trajectories relative to a moving reference 
station (e.g. Space Lab) in orbit have been studied since about 1960. By expansion of 
the gravitational potential in the neighborhood of the station Clohessy and Wiltshire 
(1960) derived a set of linear differential equations describing the relative motion in 
an approximate manner for small separation distance. Notwithstanding the many 
important improvements which have been proposed afterwards (see literature review, 
Van der Ha, 1980), an essential drawback of this approach is the nonuniform validity 
of the approximate solution as the separation distance increases. 

On the other hand, a uniformly valid description of the relative motion can be 
obtained if the two satellites are considered to be moving in two independent orbits 
around their common center of attraction. The relative trajectory of one satellite 
with respect to the other may then be obtained by somehow subtracting the two 
individual orbits. This approach, however, may lead to an often unacceptable loss of 
precision due to the numerical subtraction of almost equal quantities: the difference 
of two numbers each having n significant digits with the first m of these being identical 
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will have not more than n - r n  significant digits. For obtaining a full-precision descrip- 
tion of the relative motion one should formulate the problem in terms of difference 
quantities throughout. The essence of this methodology dates back to Encke's method 
of special perturbations (see Nacozy and Szebehely, 1976). Lancaster (1970) was 
probably the first to employ this approach in relative motion studies. Considering 
unperturbed co-planar elliptic orbits Van der Ha (1980) presented an exact analytical 
solution expressed in terms of relative elements which themselves can be determined 
directly from the launching conditions. Also it was indicated how arbitrary perturba- 
tions acting on both satellites could be incorporated by allowing the station's orbital 
parameters as well as the relative elements to be slowly varying. 

In the present paper a general exact theory for the three-dimensional perturbed 
relative motion is presented. In addition to the six orbital elements describing the 
perturbed motion of the station six relative elements are introduced which represent 
the instantaneous differences between the orbital parameters of the probe as compared 
to those of the station. Transformations between the relative state of the subsatellite, 
i.e. the relative position and velocity components taken in the local reference frame 
moving along with the station, and the relative elements are determined. This allows 
on one hand the calculation of the relative elements from the launching or initial 
conditions and on the other hand the determination of the physical state in terms of 
relative position and velocity from the instantaneous relative elements. 

The evolution of the relative motion under arbitrary perturbing forces is found by 
integrating the twelve differential equations for the variation of the station's orbital 
elements and the relative elements. These equations contain six force components, 
i.e. the three local components of the perturbing force acting on the station and the 
three relative components representing the instantaneous differences between the 
respective local perturbing force components acting on the probe and those exerted 
on the station. In this manner also the subtraction of almost equal perturbing forces 
is circumvented. The Gauss formulation of perturbation equations (i.e. the perturbing 
forces enter through their local components rather than in terms of a disturbing 
function) is chosen in order to allow the inclusion of non-conservative and time- 
dependent perturbations. Although the canonical formulation can be adapted to 
include arbitrary perturbing forces by introducing so-called canonical forces (Stiefel 
and Scheifele, 1971, Ch. 8), it is expected that the advantage of the compactness of the 
canonical equations must be paid for by elaborate transformations from the actual 
physical perturbations to canonical forces. A formulation in terms of local force 
components and a non-conventional set of elements resulting in relatively compact 
equations is adopted here. 

The general theory for the perturbed relative motion is illustrated by investigating 
the effects of atmospheric drag (assuming a simple exponential density model) and 
Earth's oblateness. The relative range and the range-rate of the probe with respect 
to the station can readily be expressed in terms of the relative state parameters. The 
resulting relative motion trajectories have been summarized in plots showing the 
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projected planar motion as well as in terms of range vs range-rate phase plots for a 
number of cases. In the absence of perturbations exact analytical representations can 
be obtained for the relative elements. This solution contains an infinite series re- 
presentation for the true anomaly minus the mean anomaly and has essentially the 
same appearance as the one for the planar case derived before (Van der Ha, 1980). 

2. Transformations Between Various State Representations 

Three different state representations will be employed for describing various aspects of 
the motions of station and probe. In the inertial formulation the states of the two 
satellites are referred to the inertial X1, X2, X 3 reference frame with origin at the 
center of the Earth. In order to prevent the loss of precision inherent in the subtraction 
of two almost equal numerical quantities the convention of representing the state 
of the probe by difference-variables relative to the station's state is adopted. Thus, 
the complete state of the two satellites is described by the twelve-dimensional vector: 

(r, v ; Ar, Av). (1) 

If one would need the state of the probe itself in the calculations it can be obtained 
in explicit form using the representation given in (1) by a simple addition of the compo- 
nents of the state vector: 

(rp, vp) = (r + At, v + Av). (2) 

The second formulation which is particularly useful in subsatellite studies provides 
a description of the relative motion of the probe within a local reference frame moving 
along with the station. Thereto the local x, y, z frame (Figure 1) with the x-axis along 
the station's instantaneous local vertical, the y-axis along its local horizontal and the 
z-axis normal to its orbital plane is introduced. It must be emphasized that at all times 
the station's r and v vectors will lie within the local x, y plane, i.e. the osculating plane. 
The probe's relative state in this frame is described by the six-dimensional vector 
(x, ~) = (x, y, z, ~, 33, k), denoting the relative position and velocity vectors of the probe 
in the station's local reference frame. The complete state of both station and probe 
can thus also be represented by the twelve-vector: 

(r, v ;x ,  ~), (3) 

where its hybrid character should be kept in mind: the former six components are 
referred to the inertial frame whereas the latter six are taken in the local frame. 

The third formulation to be employed here makes use of orbital elements and is 
particularly suited for describing the perturbed motions of station and probe. The 
state of the station can directly be represented by a set of six orbital elements. In order 
to avoid the subtraction of almost equal quantities relative elements are introduced 
to describe the state of the probe relative to that of the station. The six relative elements 
represent the instantaneous differences between the orbital elements of probe and 
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station. Thus, the twelve-vector: 

(a, ~a), (4) 

where a denotes a suitable collection of six orbital elements, is fully equivalent to the 
two previous formulations in describing the complete state of the two satellites. 

Subsequently, the transformations between the three state representations will be 
discussed. The inertial formulation plays a central role since the transformations 
between the relative state and the elements employ it as a stepping stone. 
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2.1. CONNECTION BETWEEN INERTIAL AND RELATIVE FORMULATIONS 

The t ransformat ions  between the inertial state vector (Ar, Av) and the relative state 
(x,/Q are described by the kinematical relationships:  

A r = x ,  A v = / ~ +  w x x, (5) 

where w represents the instantaneous ro ta t ion vector of the local frame with respect 

to inertial space. Wri t ing V = w x x and expanding the vectors of Equat ions  (5) in 

their respective components  leads to the identities: 

x j  = C~k Ark,  2 i = C~jk Avk - Vj,  j = 1, 2, 3. 
(6) 

Arj  = C~kjxk, Av j  = C~kj(2 k + Vg), j = 1, 2, 3. 

Here, it should be unders tood that au tomat ic  summat ion  over identical subscripts 

takes place. In order  to distinguish componen ts  referred to the local axes from those 
with respect to inertial axes the subscripts 1, 2, 3 should be read as x, y, z in the former 

case. The components  of the rotat ion matrix A = [C~jk ] and its t ranspose A T = [C~kj], 

j, k = 1, 2, 3, depend on the instantaneous state of the station and are given in 

Appendix I. 

Next, the local components  of the vector V = w x x are determined for arbi t rary 

perturbed motion.  Thereto  the instantaneous velocity and angular  m o m e n t u m  
(per unit mass) vectors are considered. Recognizing that at each instant both  the 

velozity and the posit ion vector of the station are lying in the local x, y plane because 
that  is how it was chosen, one obtains the following expressions for the velocity and 

angular  m o m e n t u m  vectors:  

v = i : = i ' u  + w •  +rwzu, 
x 

h---~ r x v ~ r 2 W  z l l  z .  (7) 

In order  that the z componen t  ofv vanishes wy = 0 had to be imposed. F r o m  the second 

result it is seen that w z = h/r 2. The remaining componen t  w x can be determined by 
studying the rate of change of h in the local frame: 

li =/~u Z + w x h = hu= - hwxuy ,  (8) 

while on the other  hand  one finds from Newton ' s  second law for per turbed motion,  
i.e. * = - #r/r  3 + F, that" 

li = d(r x v)/dt = r x + = r ( F y u  - F~ur) .  (9) 

Compar i son  of  the expressions in Equat ions  (8) and (9) produces  in addit ion to 

l~ = rFy the x componen t  of w: wx = rFz/h .  The local componen ts  of the vector 
V = w x x appear ing in Equat ions (6) follow now immediately:  

V = - yh / r  2 ; V = x h / r  2 - zr Fz /h  ; V : yr  F j h .  (10) 
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These results show that in perturbed motion the transformations between the inertial 
and relative representations for the probe's relative velocity in Equations (6) depend 
explicitly on the instantaneous normal component of the perturbing force. Also it 
may be noted that the quantities r and h appearing in Equations (10) are osculating, 
i.e. the effects of the perturbing forces must be' taken into account for determining 
the evolution of their instantaneous values. 

2.2. ~TRANSFORMATION BETWEEN INERTIAL AND ELEMENT F O R M U L A T I O N  

The transformation from the inertial state vector (r,v; Ar, Av) to the element 
representation (a; Aa) is studied now. Since the classical element formulation has 
singularities for near-zero eccentricity and/or inclination in the equations for o5 
and ~ (Fitzpatrick, 1970, Ch. 7), a non-conventional set of elements which avoids 
these difficulties is introduced: 

a = (h,f ,  g , j ,  k, L). (11) 

In terms of the classical orbital elements, i.e. e = (l, e, co, i, f~, 0) with 0 being the true 
anomaly, the elements in Equation (11) are defined as follows: 

h = x / ~ ;  f = e c o s O ;  g = e s i n O ;  

j = tan (i/2) cos f~; k = tan (i/2) sin f~; L = 0 + co + f~. (12) 

It should be emphasized that f ,  g, as well as the true longitude L, are in general fast 
variables, i.e. their rate of change does not vanish in the absence of perturbations. 
This would imply that a smaller stepsize would be required in numerical integration 
as compared to the case where all elements are slowly-varying. In an important special 
case, namely when the eccentricity remains of the same order of smallness as the 
perturbing forces throughout  the interval of interest, one may safely treat the elements 
f and g as if they were slow elements. Furthermore, the true longitude L may be 
separated into two parts, L(t) = Lu(t) + 2(0, where L ( t )  represents the true longitude 
of the corresponding unperturbed orbit emanating from the same initial conditions 
as the actual perturbed orbit. The slowly-varying deviation of L(t) from Lu(t ) is then 
described by 2(t) which vanishes identically in the absence of perturbations. It should 
be noted that for general eccentric orbits also the elements f and g can be treated in a 
similar manner so that for numerical purposes the set of elements defined in Equations 
(12) can readily be turned into a slowly-varying set for arbitrary eccentricity. The 
inverse relations of Equations (12) expressing the classical elements in terms of the non- 
conventional set become simply: 

1=h2/t2;  e = x / f 2 + g 2 ;  O = a r c t a n ( g / f ) ;  

i = 2 arctan (.,/)2 + k2); f~ = arctan(k/ j );  co = L - 0 - f~. (13) 
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In addition to the six station elements in Equation (11) a set of six relative elements 
representing the instantaneous differences between probe's and station's orbital 
parameters is introduced for obtaining a complete description of the motion of the 
two statellites: 

Aa = (Ah, A f ,  Ag, Aj, Ak, AL). (14) 

The relations expressing the twelve elements (a, Aa) in terms of the twelve inertial 
vector components (r,v;Ar, Av) and the converse expressions are fairly lengthy 
and are summarized in Appendix II. 

Finally, it is mentioned that the transformations from the relative formulation 
to the element representation (as well as the converse) can now be constructed in 
two steps: first, one transforms from the relative to the inertial formulation and 
subsequently to elements. 

3. Variation of Elements and Relative Elements 

In the present section differential equations will be formulated which describe the 
rate of change of the station's elements as well as that of the relative elements under 
arbitrary perturbing forces acting on both station and probe. The formulation adopt- 
ed here uses the Gauss form of perturbation equations so that no restrictions are 
imposed on the nature of the perturbing forces as they enter the equations through 
their instantaneous components projected upon the local axes. It is clear that the six 
perturbation equations for the station's motion will contain the three local com- 
ponents (Fx, Fy, Fz) of the perturbing force acting on the station. Similarly, the 
probe's motion is affected by perturbing forces with resulting components 
(Fpx , Fp~., Fpz) along its local axes. In order to avoid the subtraction of almost equal 
quantities one should not use Fp itself but the instantaneous difference force compo- 
nents (AFx, AFy, AFz). It must be emphasized that A F  should not be interpreted 
as the component of Fp - F along the station's local vertical, but as the difference 
between the probe's perturbing force component along its local vertical (xp-axis), 
Fpx , and the station's perturbing force projected on the station's local vertical (x- 
axis), F .  

The six perturbation equations for the station in terms of the set of elements given 
in Equation (11) can be derived from the classical Lagrange Planetary equations 
(Fitzpatrick, 1970, Ch. 7) or also directly from Newton's second law: 

h = rFy, 

f = -- hg/r 2 + 2hE~p, 

0 = hf/r2 -}- hFx/# + grF fh ,  

(j) = rF cos L(1 + j2  + k2)/(2h), 

[c = rF z sin L(1 +j2 + k2)/(2h), 

L = h/r z + r F ( j  sin L - k cos L)/h, 



THREE-DIMENSIONAL SUBSATELLITE MOTION UNDER AIR DRAG AND OBLATENESS PERTURBATIONS 293 

with 

r = h2/[/~(1 + f ) ] .  (15) 

The compactness of this set of equations in comparison with the classical perturba- 
tion equations is evident. The variation of the probe's elements would be described 
by a similar set of equations with all quantities related to the probe since its motion 
can be considered to be independent from that of the station. The acceleration com- 
ponents F p x  , Fpy, and r p z  would be expanded along the probe's local axes. Introduc- 
ing the instantaneous acceleration component differences 

AF x = f p x  - F x (cyclic for x, y, z), (16) 

one can formulate the equations for the variation of the relative elements by subtract- 
ing the corresponding equations for the probe and station. Care should be taken, 
however, that the subtraction of almost equal quantities is avoided. Therefore, the 
following full-precision difference-procedures are introduced for handling the sub- 
traction of almost equal products and quotients" 

A(x 2) = (2x + Ax)Ax, 

A(xy) = (y + Ay)Ax + xAy, 

A(xyz) = (z + Az)A(xy) + xyAz, 

A(x/y) = l a x  - (x/y)Ay]/(y + Ay), (17) 

where x, y, and z denote arbitrary quantities. After repeated application of the rules 
in Equation (17) one obtains the equations for variation of the relative elements: 

(ah) = a(rV ), 

(A f )  = - [(9 + AolA(h/r2) + hAo/r2] + 2A(hVyl~, 

(A9) = [ ( f  + af)A(h/r 2) + hAf /r 2] + A(hFx)/~ + 

+ [(g + 6 g ) a c  + ~Ag],  

(N) = �89 + J + AJ)AG z + 6 A J] cos(L + aL) + ~6~(1 + J)A(cosL), 

(ak) = �89 + J + AJ)AG~ + azAJ ] sin(L + AL) + �89 + J)A(sinL), 

(AL) = A(h/r 2) + (j sin L - k cos L)AG~ + 

+ ( G  + AG~) [Ajsin(L + AL) - Akcos(L+ AL) + j A ( s i n L ) -  

- kA(cos L)], 

with 

J = j 2 + k Z ;  Gj=rFj/h,  j = y , z ;  

A J  ~- A ( j  2) § A(k2)," 
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AGj = [A(rFj) - GjAh]/(h + Ah), j = y, z; 

Ar = [A(h z) -hZAf/ (a  +f)]/[ /~(1 + f +  Af ) ] ;  

A(h/r 2) = [Ah - hA(r2)/r2]/(r + Ar) 2, (lS) 

while A(cos L) and A(sin L) are given in Appendix I, Equations (A5). The set of twelve 
first-order differential equations in (15) and (18) describe in an exact manner and with 
full precision the motion of the station as well as the motion of the probe relative to 
the station under arbitrary perturbing forces acting on both bodies. If one wants to 
evaluate the effect of a particular perturbing force on the motion of the two satellites 

one needs to calculate the six perturbation components  ( F ,  Fy, F z, A F ,  AFy, AFz) 
with the use of the rules specified in Equations (I 7) and substitute these expressions in 

the system of Equation (15) and (18). In later sections this procedure will be illustrated 
by means of a few realistic perturbing forces: Earth's oblateness and air drag. 

4. Unperturbed Relative Motion 

If the perturbing forces are assumed to be absent one can determine exact represent- 
ations for the relative motion without loss of precision. The slow orbital elements 
h,j ,  k as well as the corresponding relative elements Ah, Aj, Ak will remain constant 

in this case and can be determined from the initial conditions (ro, v o ; Aro, Avo) by 
means of Equations (A6) in Appendix II. Also the initial values of the non-constant 
orbital parameters are obtained from Equations (A6): fo, go, Lo ; Afo, Ago, ALo. 
The objective is now to determine the evolution of these six elements as a function 
of time. Thereto these elements are written in terms of v = L - L o = 0 - 0 o : 

f = f o c o s v -  gosinv, g = f o s i n v  +goCOSV, 

A f  = Afo cos (v + Av) - Ago sin(v + Av) - 2 f  sin 2 (Av/2) - 9 sin (Av), 

A 9 = A f0  sin (v + Av) + Ago cos (v + Av) - 29 sin e (Av/2) + f sin(Av), (19) 

with Av = AL - AL o . It is seen that only L and AL still need to be determined. The 
station's true longitude can be written as 

L = 0 + L o - 0o, 0 o = arc tan(9o/ fo) ,  (20) 

while the station's true anomaly as a function of time follows from Kepler's equation. 
The derivation of AL with full precision for elliptic orbits is a little lengthy but 

straight-forward. Use will be made of the variable z representing the instantaneous 
difference between the station's true and mean anomaly:  

z = 0 - M = ~ C i sin (jM), (21) 
j - 1  

where the coefficients Cj can be expressed in terms of Bessel functions containing 
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multiples of the eccentricity as arguments,  Brouwer and Clemence (1961), Ch. 2, Equa- 
t ion (74). For  practical applications when the eccentricities are less than  say 0.5 
the series expansion 

C j =  ~ c.m(e/2) 2m+~, j = l , 2  . . . .  (22) 
3 

r n ~ 0  

is more  convenient.  The  coefficients cjm have been evaluated for j = I, 2 , . . . ,  16 and 
m = t, 2 . . . .  ,8 - [.//2] by means of a formula manipulat ing comput ing  language 
(SYMBAL), Van der Ha  (1980). The relative element AL can now be written as 

AL = A~ + AM + AL o - A0o, (23) 

where all terms can be expressed in known quantit ies:  

A0 o = arc tan { (foAgo - g o A f o ) / ( f  2 + g~ + f o A f o  + goAgo)}, 

AM = AM o + rAn, 

AM o = AE o - Ae sin(E o + AEo) - 2e sin(AEo/2)cos(E o + AEo/2), 

E o = 2 arc tan  IS t a n 0 o / 2 )  ],  S = ~ - e)/(1 + e), e = ~ o  2 + 92 , 

AE o = {AS sin [(0 o + A0o)/2 ] cos (0o /2 )+  Ssin(AOo/2)}/  

{cos [(0 o + A0o)/2 ] cos(0o/2) + S(S + AS)sin [(0 o + A0o)/2 ] x 

x sin (0o/2)  }, 

AS = - 2Ae/[(1 + e~ /1  - (e + Ae) 2 + (1 + e + Ae)x/1 - eZ], 

Ae = [A(fg)  + A(92)]/[e + x / ( fo  + Afo) z + (90 + Ago)2] , 

An = - A g,,/-~[A 2 + 3(1 - A)] / [1  + (1  - A)3/2], 

A = Aa/(a + Aa), a = h2/[g(1 - e~)], 

Aa = {A(h 2) + h2A(e2)/(1 - e 2) }/{#[1 - (e + Ae) 2] }, 

Az = ~ { 2 C j s i n [ j A M / 2 ] c o s [ j ( M  + AM/2) ]  + ACjs in[ j (M + AM)]},  
j=l  

2m+j 
A C j = A e  ~, {cjm2 -2m-J Z [ (e+Ae)k- ' e2m+J-k]} ,  j = l , 2 , . . .  (24) 

r n = 0  k = l  

The validity of this solution is restricted only by the domain  of convergence of the 
series expansion of Equations (22) and 24): e < 0.6627434. A discussion of the accuracy 
of the results as a function of the eccentricity is given by Van der Ha (1980) where the 
co-planar  case was studied. Naturally,  those accuracies remain valid also for the 
present solution. 
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It may be useful to briefly summarize how to employ the results in an actual 
application: 

(i) The station's initial state is given in terms of either its orbital elements or its 
r0, v o vectors in inertial space. Also the initial position and velocity difference vectors 
Ar o and Av o of the probe with respect to the station are provided. (If the relative 
position and velocity vectors x o and ~0 were given, the latter transformation of 
Equations (6) would produce z~r o and Av0). 

(ii) The initial twelve orbital elements can be calculated by means of Equations (A6). 
(iii) While six of these elements remain constant throughout, the remaining 

elements can be determined at an arbitrary time t from Equations (24). 
(iv) Since the instantaneous elements are known at time t one can obtain the cor- 

responding state vector (r, v; ~r, Av) using Equations (A8) and (A10), 
(iv) If the relative state (x, i)  is needed at time t the former transformation in 

Equations (6) should be applied next. 

5. Perturbed Relative Motion 

The exact theory for perturbed relative motion based on the variation of the relative 
elements will be applied to the most relevant perturbing forces for near-Earth satellite 
orbits, namely air drag and Earth's oblateness. The objective is to obtain expressions 
for the components Fj and A F j , j  = x , y ,  z appearing in Equations (15) and (18)in 
terms of the instantaneous elements (a, Aa). 

5.1. AIR DRAG PERTURBATIONS 

Although the formulation itself does not impose any restriction on the nature or 
complexity of the particular air density model, the algebra in calculating the differ- 
ence force components becomes extremenly cumbersome for realistic air density 
models accounting for the influences of the diurnal bulge, solar and geomagnetic 
activity. For  the purpose of illustration a simple stationary exponential density 
model is adopted here: 

p = p ( r )  =/5 exp [ - (r  - ~ ) / H ] ,  (25) 

where/5 = p(r-) is the given constant density at some suitable reference altitude and 
H designates the presumably constant density scale height. Its value may be chosen 
differently for different reference altitudes ~ in order to account for its tendency to 
increase at higher altitude. The perturbing acceleration of the station induced by 
air drag is written as: 

F = - p C ( A / m ) v v / 2 ,  (26) 

where C stands for the drag coefficient (C = 2.2 for a spherical satellite in free-molecule 
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flow) and A/m is the area/mass ratio of the station. It may be mentioned that in 
expression (26) the speed of the ambient air due to the Earth's rotation is neglected 
in comparison to the satellite's velocity. Also the effect of the Earth's oblateness on 
the shape of equidensity surfaces in the atmosphere is ignored. Writing v = 
= i'u x + (h/r)uy, Equations (8), one obtains the following local components of F: 

F~ = - p~cvf, Yy = - pKvh/r, F: = 0, (27) 

with drag parameter K = CA/(2m) and v = [f2 + (h/r)2] 1/2. 
The instantaneous differences in the local force components of the probe compared 

to those of the station can be calculated with full precision from Equations (27) using 
the rules formulated in Equations (17): 

A F  = - [i  + A0:)]A(ptcv) - p~cvA(?), 

AFr = - [h/r + A(h/r) ]A(p~cv) - p~:vA(h/r), (28) 

where the explicit expressions of r, ? and Aft) in terms of elements are given in Equa- 
tions (A7), while A(h/r) and A(p~cv) can be broken up as shown in Equations (17) in 
terms of Ah, Ar and Ap, A~ and Av, respectively. The difference in orbital radius can 
then be expressed in elements and relative elements as in Equations (18). The density 
at rp, i.e. the probe's position, can be obtained from Equation (25) when replacing r 
by rp and taking the same reference density fi and scale height H as for the station. 
If there exists a large discrepancy between the perigee heights of station and probe 
intermediate reference values for ~ and H should be chosen. The following exact 
representation for the density difference can be calculated from Equation (25): 

Ap = - 2p exp [ -  Ar/(ZH)] sinh [Ar/(2H)]. (29) 

The expressions for Av and A~c are given by" 

Av = { [2~ + A(?)]A(?) + [2h/r + A(h/r)]A(h/r)}/(v + vp), 

~p = {[~ + a(~)] 2 + [h/r + a(h/r)]  2}'/2, 

A~c = [ C + AC)A(A/m) + (A/m)AC]/2,  (30) 

which can further be reduced in terms of AA and Am. It may be noted that for large 
differences in Aim of probe and station AK can be calculated by direct subtraction 
since there is no danger of loss of precision in that case. 

5 . 2 .  E A R T H ' S  OBLATENESS P E R T U R B A T I O N S  

Taking the inertial X 3 axis normal to the equatorial plane the disturbing potential 
(per unit mass) due to the Earth's oblateness is given by: 

v =  - ~[ 1 /3  - ( X 3 / r )  2 ] / r  3, (31) 
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where e = 3 ~ J 2 R ~ / 2 .  The perturbing acceleration becomes thus: 

F -  - ~V = - e l 1  - 5 ( X 3 / r ) Z ] r / r  5 - 2 e X 3 U 3 / r  5. (32) 

The local componen ts  of this expression are 

F x = - ~(1 - 3c~3)/r '~, Fy = --  2g~130~z3/r  r F = - -  2g0~130~33/r 4", (33) 

where c~j3 = ( u j ,  U 3 ) , j = x , y , z  , can be expressed in the instantaneous elements, 
Appendix I. The three difference componen t s  can be calculated again using the rules 

of Equat ions  (17). One  finds: 

AF x = e[3A(cq3) 2 + (1 - 3~z13)A(r4)/r4]/(r + Ar) 4, 

A F  y = 2e[cq 3 ~ 2 3 A ( r 4 ) / r  4 - -  A ( ~ 1 3 ~ 2 3 ) ] / ( r  - I - A r )  4, (34) 

A F  = 2e[a 13c~33A(r4)/r 4 -- A(~ 130~33)]/(r q- Ar) 4, 

where A(cq 3ct~3), j = 1,2, 3, can be expressed in the elements and relative elements by 
means of Equat ions  (17) and Equations (A5), whereas 

A(r4) /r  4 = a(4 + 6a + 40 .2 d- 0"3); 0. = Ar/r .  (35) 

Higher zonal harmonics  and also tesseral harmonics  could be included in a similar 

manner.  Their  effects on the relative mot ion  will be negligible in general. 

6. Discussion of ResUlts 

The theory presented above has been p rog rammed  and the resulting relative mot ion  

patterns have been established for a variety of test cases. The validity of  the results 
for the unper turbed case as well as of  those under  air drag and oblateness perturba- 

tions was confirmed through compar isons  with the mot ion  of  the two individual 

satellites derived from a different independent  orbit  generator.  Since it was observed 
that the relative mot ion  is hardly affected by the parameters  of the station's orbit  as 

long as its eccentricity is small ( < 0.01) a typical stat ion orbit  with orbital elements 

a = 6778 km, i = 30 ~ and e = f~ = 0, will be taken in the following. 

The influence of  the Earth 's  oblateness on the relative mot ion  is illustrated in 

Figure 2 for a subsatellite launched with Av = 10 m s -  ~ under cone and clock angles 
c~ = 30 ~ and fl = 60 ~ These angles can be visualized with the aid of  Figure lb  and lead 

immediately to the initial relative state: 

x o = 0; Xo = Av(cos c~ u x + sin c~ cos fl uy + sin c~ sin f l u ) ,  (36) 

since i equals Av when x = 0, Equat ions (5). Figtlre 2a shows the projected (in the 

station's instantaneous orbital plane) relative ihotion pattern of the probe as seen 

from the station. It should be recognized that the x, y reference plane is not inertially 
fixed under oblateness perturbations" the F z force component ,  Equat ions  (33), pro- 

duces a slow rota t ion of  the x, y plane about  the station's instantaneous local vertical 

i.e. the x-axis. The same case as in Figure 2a is shown in Figure 2b in a different way:  
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here the range and range-rate evolution are plotted against one another in a phase- 
plane manner. The variables R and/~ are the most natural ones for describing three- 
dimensional subsatellite trajectories since they represent directly measurable quant- 
ities. Their values in Figure 2b are derived from the following simple expressions in 
terms of the relative state vectors x and ~: 

R = I"t; R -- (x, (37) 

It is seen from Figure 2 that the Jz-perturbed and the unperturbed relative trajectories 
practically coincide over the first ten revolutions. This close agreement (at least two 
common digits in the range distance) was also observed in other test cases and is 
due to the fact that the difference in the J2 induced perturbing forces acting on probe 
and station is an order of magnitude smaller than the individual J2 perturbations 
exerted on each body. This may be seen from Equations (34) where A F is proportional 
to eAr/r with Ar much smaller than r. Thus, the variation of the relative elements 
which is induced exclusively by difference quantities is much slower than that of 
each of the two sets of orbital elements separately. 

More interesting than the oblateness effects are the drag induced perturbations of 
the relative motion trajectories. Nowadays, it is common practice to derive air den- 
sities from the exospheric temperature T which itself is determined from empirical 
relations containing, principally, solar and geomagnetic activity levels as well as the 
local solar time governing the diurnal heating of the atmosphere (Jacchia, 1977). 
Taking the station's orbital radius as reference height, i.e. F = 400 + R e km, the values 
summarized in Table I for air densities and scale heights at low, middle and high 
values of exospheric temperature are derived from Jacchia, 1977. 

T A B L E  I 

Densi t ies  a n d  scale he ights  for  a few values  of 

T~ at  F = 400 k m  a l t i tude  

T~(K)  f i (kg/m 3) H ( k m )  

L o w  : 600 2 . t2  x 10 -13 37.75 

M i d d l e  : I000  3 . t l  x 10 - l z  55.92 

H i g h  :2000 2.48 x 10 - ~  90.48 

Figure 3 shows the relative motion under the same launching conditions as in 
Figure 2 but including drag perturbations for the high exospheric temperature situa- 
tion. Although it is not realistic to assume a constant To~ over the duration of ten 
revolutions because of considerable local fluctuations (e.g. the diurnal effect), the 
results may nevertheless he representative of the actual trajectory described when the 
mean exospheric temperature above the orbit paths amounts to 2000 K and the fluctua- 
tions around this average value are within reasonable bounds. The values for the drag 
parameters of probe and station were taken identical in Figure 3. The lower value 
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K = .0005 would correspond to the actual value for the Space Shuttle flying in a 
minimum drag attitude. Whereas the solid curve essentially coincides with the unper- 
turbed motion in Figure 2, the dotted curve representing a 100 times higher value of 

-- ~Cp shows a noticeable deviation: since in this case the perturbing forces themselves 
are larger also their differences are correspondingly larger, Equation (28). If  the middle 

or low density values of Table I were chosen a negligible deviation from the patterns 
of Figure 2 would be the result even if the large value K = ~Cp = .05 were taken. It 
can be understood why the dotted curve will tend to move farther away from the 
station than the solid line. Since the probe moves at a higher mean altitude due to 
the positive energy increment obtained at launch its loss of energy due to drag will 
be less than that of the station. This differential energy loss is naturally more signi- 
ficant for higher values of the drag parameter  and leads to the lower mean orbital 
rate for the probe as displayed by the dotted curves in Figure 3. 

More dramatic deviations from the unperturbed relative motion patterns are 

observed when the drag parameters of probe and station are different: in that case 

there will be a considerable difference in the respective drag forces even when the 
two satellites are close to one another. Taking coplanar trajectories and an inter- 
mediate air density ( T  = 1000 K), Figure 4 shows two cases where the station's 
drag parameter  ~c is 100 times as large as ~cp. Since the station's energy toss is corres- 
pondingly larger than that of the probe a continual relative decrease in the probe's 
mean angular rate and an accelerating drift pattern will be the result. In Figure 4a 
the probe is launched in the local vertical direction so that there is no essential 

difference in the angular rates of station and probe if their drag parameters are identi- 

cal as is illustrated by the motionless elliptical pattern. In Figure 4b the probe has 
been launched into a higher energy orbit so that in the case of identical drag para- 
meters a constantly drifting pattern appears, i.e. the dotted curve. If ~c > Kp the energy 
discrepancy will grow and the drift will accelerate continually as shown by the solid 
curve. 

In Figure 5 the reverse situation where ~cp is 100 times larger than ~c is illustrated. 
The initially higher differential energy of the probe is quickly dissipated due to its 

higher sensitivity to drag. As the probe continues to lose more energy than the station, 
a very interesting reversal of the relative trajectory is observed when the probe's 
mean angular rate surpasses that of the station, Figure 5a. By increasing the initial 
energy difference the reversal can be postponed to any arbitrary time. Figure 5b shows 
a case where the probe after ten revolutions very nearly returns to the station. Due 
to its lower energy as compared to the station automatic rendez-vous may be hard 
to accomplish. Nevertheless, these trajectories could be of practical importance as 

they allow the later retrieval of a (possibly tethered) subsatellite by the Shuttle with 

relatively little manoeuvering. By choosing suitable launching conditions based on 
energy considerations any arbitrary time interval between launch and retrieval could 
be accommodated.  

The effect of different exospheric temperature on the relative trajectories is shown 
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in Figures 6 and 7. The high temperature leads to a larger difference in energy loss 
than for the low Too case. When ~cp > tc the probe's energy surplus will be dissipated 
quicker for high T resulting in the faster angular rate than for low T as shown in 
Figure 6a. In the case ~p < ~c the probe's mean angular rate at the high To will be less 
than that at the low temperature so that the probe lags further behind for high T as is 
illustrated in Figure 6b. The same qualitative effects are observed in Figures 7 where 
now the differences are more pronounced since the launch has not already introduced 
a difference in mean angular rate. 

In Figure 8 a three-dimensional trajectory is shown in terms of its projected planar 
motion (a) and as a (R,/~) phase plane (b). For  sufficiently small Av the out-of-plane 
(z) motion can be considered as an harmonic oscillation with station's orbital period 
while the in-plane relative motion is similar to the planar trajectory obtained after 
a co-planar launch with the projected Av. Thus, the same energy arguments as employ- 
ed in the co-planar trajectories can be used here for obtaining a qualitative under- 
standing of the resulting motion. In Figures 8 and 9 the probe is launched into a lower 
energy orbit. Due to its lower drag parameters the probe is regaining energy on the 
station in Figure 8 (solid curves). The influence of a small eccentricity in the station's 
orbit can be seen in Figure 9 where identical drag parameters for probe and station 
are taken. The discrepancy between the two patterns occurs predominantly in the 
x direction and is caused by the varying altitude of the station and the accompanying 
fluctations in density. 

7. Concluding Remarks 

A general three-dimensional theory for relative motion allowing the inclusion of arbit- 
rary perturbing forces acting on both bodies has been presented and applied to air 
drag and Earth's oblateness perturbations. An exact analytical solution was found for 
the unperturbed case. It is important to note that the formulation in terms of relative 
elements allows considerable freedom in the choice of the perturbing forces. A more 
realistic air density model as the one used in the present paper can be accommodated 
by simply providing the time- and position-dependent force and difference force 

components. 
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Appendix ! : Components of  Matrices A andAA 

The rotation matrix A = [c~jk ] describes the transformation from the inertial unit 
vectors Ui, i = 1,2, 3, to the station's locaI unit vectors ux, uy, u :  

where the components c~jk , j, k = 1, 2, 3, depend on the instantaneous state of the 

station through the elements j, k, and L. The explicit dependence of c~jk on these 
elements can be derived from the corresponding classical expressions in terms of co, f~, 
and ~b (e.g. Fitzpatrick 1970, Section 2.5): 

cq3 = 2( j  sin L - k cos L)/(1 + J ) ,  

7 1 t = k ~ 1 3 q - c o s L ,  ~12 = - . j c q 3 + s i n L ,  

~23 = 2 ( j c o s  L + ks in  L)/(1 + J), 

~2I = k~23 - sin L, :~22 = - - J ~ 2 3  + c o s L ,  

c z 3 1 = 2 k / ( l + J  ), c ~ 3 2 = - 2 j / ( l + J ) ,  o ~ 3 3 = ( 1 - J ) / ( l q - J ) ,  (A2) 

where J is an abbreviation for j  z + k 2 . The elements of the inverse matrix A- 1 follow 
immediately due to the orthogonality of A " 

A - ~ : A  T : [ % ] ,  j , k :  1,2,3. (A3) 

Similarly as in Equation (A1) one can describe the transformation between the 
probe's local xp, yp, Zp frame and the inertial frame. The elements of the rotation 
matrix Ap between Uj and upx, ups,, Upz can be designated a s  (~p)jk" In accordance 
with our methodology for avoiding the loss of precision due to the subtraction of 
almost equal quantities the matrix Ap should not be employed directly but in the 
form A + AA. The 'difference matrix' AA = [Ac~jk ] contains the projections of the 
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difference vectors Aux( = uvx - u ) ,  Auy and Au z upon the inertial X~, X2,  X 3 axes: 

u/ La%1A%2A%3j u 

(A4) 

It should be emphasized that the matrix AA (in contrast with A) is not orthogonal. 
The components  [Aajk ] can be calculated from Equations. (A2)with full precision: 

Acq3 = 2[Aj  sin L -  Ak cos L +  (j + Aj)A(sin L) - (k + Ak)A(cos L) - 

- o:13AJ/2J/K , 

A0r = A(cos L) + (k + Ak)Ac~13 + cq3 Ak, 

Acq2 = A(sin L) - (j + A j)AoC13 - -  513 A j ,  

Ac~23 = 2[Aj  cos L + Ak sin L + (j + Aj)A(cos L) + (k + Ak)A(sin L) - 

- o:23 A J  / 2 ] /  K , 

Ac~21 = - A(sin L) + (k + Ak)Ac~23 q- o~23Ak, 

A%2 = A(cos L) - (j + Aj)Aa2a - c%3 A j ,  

A % l = ( 2 A k - % l A J ) / K ,  A % a = - ( 2 A j + % z A J ) / K ,  

A 0 ~ 3 3  : - -  2 A J / [ K ( 1  + J ) ] ,  

with 

A J = ( 2 j + A j ) A j + ( 2 k + A k ) A k ,  K = I + J + A J ,  

A(cos L) = - 2 sin ( A L / 2 )  sin (L + AL/2),  

A(sin L) = 2 sin(AL/2) cos (L + AL/2). (A5) 

It is seen that the components  of the matrix A A depend on the three station's elements. 
j ,  k, and L as well as the corresponding relative elements A j, Ak, and AL. 

Appendix II: Transformations between (r, v; Ar, Av) and (a, Aa) 

First it is shown how the orbital elements a and the relative elements Aa can be calcul- 
ated from the state vector r ,v ;Ar ,  Av with components  in the inertial X1,  X 2 , X  3 

frame. Loss of precision is avoided at all stages: 

h=[r• 
f = h 2 / ~ r ) -  1 wi thr  = tr[; 

g = h ? / # ,  k = (r ,v) / r  ; 
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j = _ h2/(h + h3)~ 
k = h l / ( h + h 3  ) j ,  h j = ( h , U ) ,  j = 1 , 2 , 3 :  

L = arc tan  [(r  2 +jr  3)/(r I - kr 3)], r~ = (r, U ) ,  j = 1, 2, 3 ; 

A h = ( 2 h + A h ,  Ah) / (h+hv) ,  A h = ( r + A r )  x A v + A r x v ,  

h = ](r + At) x (v + Av)]; 

A f  = [Ah(2h + Ah) - h 2 Ar/r] /[p(r  + Ar)] ,  

Ar = ( 2r + Ar, Ar)/(r + rp), rp=lr+Ar]; 
A 9 = (h + Ah)A0:)/# + gAh/h, 

A(i) = [(r,  Av) + (Ar, v + Av) - #Ar]/(r + Ar)  ; 

Aj = [h2(ah  + Ah3)/(h + h3. ) - Ah2]/(h + h a + ah + Ah3) 

Ak - [ h a ( A h + A h 3 ) / ( h + h 3 ) - A h l ] / ( h + h 3 + A h + A h 3 ) ; '  

A h j = ( A h ,  U ) ,  j = 1 , 2 , 3 ~ ;  

AL = arc tan  [ ( D A N  - NAD)/(D 2 + N 2 + DAD + N A N ) ] ,  

N = r  2 +jr3,  D = r 1 - kr 3, A N  = Ar 2 + A(Jr3), 

AD = Ar I - A(kr3). (A6) 

One should be aware  of the following nota t ional  convent ion  for differences in vector  

lengths: for instance, Ar stands for A[ r [=  Ir + A r [ -  Ir[ and is in general  different f rom 
larl. 

Next  the converse  relat ionships expressing the vectors  (r, v, Ar, Av) in terms of the 

elements (a, Aa) are derived. The orbi tal  distance r, the radial  velocity c o m p o n e n t  
as well as their cor responding  difference quanti t ies Ar and A(?) will p lay an impor tan t  

role in these expressions. These four variables can readily be wri t ten in terms of 

elements and relative elements:  

r=h2 / [# ( l  + f ) ] ;  ? = # g / h ;  

Ar = [(2h + Ah)Ah - hZAf/(1 + f ) ] / [ # ( 1  + f + A f ) ] ;  

A(/) = #A(g/h) = #[A 9 - gAh/h]/(h + Ah). 

The  inertial c o m p o n e n t s  of  the 

lZu x+ (h/r)Uy, Equat ions  (8), 
Equat ions  (A1): 

(A7) 

vectors r and v follow f rom r = r u  x and v =  

after performing the coordinate  t ransformat ion  of 

vj = (v, Uj) = icqj + (h/r)o~2j , j = 1, 2, 3. (A8) rj ----- (r, Uj) = rcqj, 
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The difference vectors Ar and Av can be written in the full precision forms: 

Ar=rAu +Ar(u +Au), 
Av = ~:Au + A0:)(u~ + Au)  + (h/r)Auy + A(h/r)(uy + Auy). (A9) 

Expanding the local unit-vectors and difference-unit-vectors in terms of their project- 
ions on the inertial reference axes, i.e. the components of the matrices of Equations 
(A1) and (A4), one obtains: 

Arj = (Ar, U j) = rAc~l~ + (~lj + Ac~a)Ar, 

Avj = (Av, Uj) = t:Actlj + (c~lj + Ac~tj)A0:) + (h/r)Ac~2j + (c~2j + Actaj)A(h/r), 

j = 1, 2, 3. (A10) 


