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    Three-axis attitude estimation for spinning spacecraft is recently of considerable practical interest. In this scope, 
sequential filtering algorithms are also being studied recently. In this study, we extend our recent research for a nonlinear 
filtering algorithm for spinning spacecraft attitude estimation. In the filter the attitude of the spacecraft is represented using a 
set of spin parameters. These parameters consist of the spin-axis orientation unit vector in the inertial frame and the spin 
phase angle. As the system and measurement models are nonlinear an Unscented Kalman Filter (UKF) is implemented to 
estimate the spacecraft’s attitude. In this paper, we investigate the accuracy of the algorithm by using telemetry data gathered 
by the CONTOUR spacecraft in 2002. We discuss different methods for satisfying the spherical norm constraint for the spin-
axis orientation unit vector terms. The filter works well and produces consistent results with those of the Tanygin-Shuster 
and TRIAD algorithms. Investigations on the norm constraint condition shows that unit vector normalization must be applied 
specifically in the presence of measurement biases.     
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1.  Introduction 
 

The spin-stabilization is one of the concepts that have been 
used for spacecraft attitude stabilization since the early space 
era. Recently it has become attractive once more especially for 
the small satellite missions1,2). The reason is its simplicity and 
suitability to conduct science missions at a relatively low cost, 
which are both desirable criteria sought for small satellites.  

Nonetheless, attitude estimation for spinning spacecraft is 
not as simple as the concept itself. Three-axis attitude 
estimation for a spinning spacecraft is likely to be even more 
challenging than that for a three-axis stabilized spacecraft. In 
particular, for recent spinning spacecraft missions the attitude 
requirements are more stringent. For these missions various 
filtering algorithms are proposed to enhance the capability of 
the attitude determination system3-5). 

Recently a nonlinear attitude filtering algorithm that is 
designed for spinning spacecraft has been proposed6). Its 
essence is representing the attitude of spinning spacecraft using 
a set of spin parameters. These parameters are the components 
for the spin-axis orientation unit vector in the inertial frame 
plus the spin phase angle. This representation is advantageous 
as the spin axis direction do not change rapidly in the inertial 
frame. Furthermore the phase angle changes at a constant rate 
in the absence of a torque. An Unscented Kalman Filter (UKF) 
is used to estimate spacecraft’s attitude in terms of these 
parameters. The algorithm is called the SpinUKF.   

The results with the simulated data for JAXA’s ERG (the 
Exploration of Energization and Radiation in Geospace) 
spacecraft showed that the SpinUKF works well even with 
large propagation step size. Depending on the simulation 
conditions the filter has similar or better attitude estimation 

accuracy than a filter with quaternions in its state vector6). 
This study applies the SpinUKF algorithm to the in-flight 

sensor data7) collected by NASA’s CONTOUR spacecraft. 
CONTOUR was designed and operated by Johns Hopkins 
University Applied Physics Laboratory, Laurel, MD, USA. It 
was launched in July 2002 and injected into an elliptical Earth-
phasing orbit that lasted about 6 weeks. During this period the 
spacecraft was stabilized at nominal spin rates of either 20 or 
60 rpm and used a combined Sun-Earth sensor for the attitude 
measurements. 

In this paper, we evaluate the performance of the SpinUKF 
with the real CONTOUR flight data. Moreover we investigate 
two different methods for satisfying the spherical norm 
constraint for the spin-axis unit vector. These are the brute force 
normalization and Lagrange multiplier methods. We compare 
the attitude estimation results when SpinUKF incorporates one 
of the normalization methods with those of a filter without 
norm constraint.   
 
2.  Sensor Measurement Models 
 

A combined Earth-Sun sensor is used for attitude 
measurements onboard the CONTOUR spacecraft7). The 
measurement model for unit-vector measurements is simply, 

b
b i iA S S v                   (1) 

where, bS is the measurement vector in the body frame, iS
is the reference vector in the inertial frame, b

iA is the attitude 
matrix that transforms a vector from inertial to body frame and 

v is the measurement noise. With reference to the geometry of 
the measurements (Fig.1) the unit vector measurements in the 
body frame can be formed as  
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using the sensor outputs for Sun-sensor and Earth-sensor 
measurements, respectively. 

The construction of the Sun-sensor unit-vector 
measurements is relatively easy. A typical V-slit Sun-sensor for 
a spinning satellite provides the Sun crossing times and the Sun 
aspect angle (SAA),  , which is the angle between the spin 
axis (i.e., body Zb axis in Fig. 1) and the Sun direction  S. When 
considering the rotation angle shift of the Sun-sensor vertical 
slit plane relative to the body bX  axis, i.e. angle  , we can 
calculate the unit vector measurement at the time of Sun 
crossing as in Eq.(2a).  

 

Figure 1. Geometry for Sun and Earth-sensor measurements.  

The Earth-sensor has two pencil-beams oriented at angles 

i  ( 1,  2i  ) with respect to the spin axis. Each pencil-beam 
measures the crossing times for Space/Earth (S/E) and 
Earth/Space (E/S) infra-red boundaries. With the knowledge of 
the spin rate, these crossing pulses can be transformed into the 
half-chord angles i  ( 1,  2i  ), which are the fundamental 
measurements produced by the Earth-sensor. By using these 
measurements and as well the apparent Earth radius angle,  , 
we find the relationship for the Earth Aspect Angle (EAA),  , 
from the spherical geometry (Fig.1): 

cos cos sin cos sin cos        1,2i i i i         .    (3)  

Here, the instantaneous value for the apparent Earth radius 

angle,  , can be calculated as 1( ) sin ( / ( ))IRt R r t  , where 

r  is the orbital radius and IRR  is the Infrared (IR) Earth 

radius. Note that the nominal value of IRR  is ~40km above the 

Earth radius8). The actual value of IRR is unknown and varies 

over time and location. 

In fact, the scan paths of each of the two IR pencil-beams 
over the Earth are different due to different mounting angles 
( 1  and 2 ). As a result, their S/E and E/S crossings are at 
different locations on the Earth’s IR rim. Therefore, the two   
values observed by the IR sensors will in general differ under 
seasonal, diurnal, and local variations in the IR radiation 
intensities. Yet it is very hard to model all of these effects 
realistically so we assume, a priori, that the Earth’s IR radius is 
perfectly uniform so we may use the same  value for both IR 
beams.  

We may use different methods to derive the EAA when there 
are two individual pencil-beams. To start with, we may rewrite 
the Eq.(3) in the form9):  

cos cos sin sin cos        1,2i i i ib b i       ,   (4) 

where the auxiliary functions are defined as:  

 2
1 sin sini i ib    ; 

   arctan(tan cos )i i i         1,2i  .    (5a,b) 

Thus, each pencil-beam gives its own EAA solution, i : 

  arccos cos( ) /i i ib         1,2i  .      (6) 

One method to construct a single EAA value to use in the 

estimator is to take the average of the two different i  values 

produced by each of the two pencil-beams as

1 2( ) / 2ave     , after the sign ambiguity is resolved. The 

second method is to calculate an optimal (in a minimum 

variance sense) opt  value as a weighted combination of the 

two individual i angles. This method is based on the 

sensitivity analysis for each of the two i solutions with respect 

to the half-chord angle measurements, i 9).  

Lastly, a single solution for   may be calculated from the 
two distinct relationship equations (Eq.3) for the two pencil 
beams without requiring the individual i  solutions (Eqs.4-
6). Since we assume here that the   value is identical for both 
pencil-beam scans we obtain the single sin  solution as,  

1 2

2 2 1 1
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.        (7)   

In this study, we use the “single beta” sin  solution of Eq. 
(7) to build unit-vector measurements from the Earth-sensor 
outputs.  

Fig. 2 gives the derived EAA from the chord measurements 

and includes 1 and 2  values for each pencil-beam, which 

are calculated with Eqs.(5,6). The usable good data, which is 
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least corrupted by sensor biases, is collected during the scans 

over Earth’s mid-latitude region that starts approximately at 

36.6h since the perigee pass and lasts for about 1h9). The 

interval before the mid-latitude region should be avoided 

because it is near the singularity in the chord-length 

measurements for the second pencil-beam and the same should 

be done for the first pencil-beam after the mid-latitude region. 

 

Figure 2. Earth aspect angles derived from chord measurements. 

To build the unit-vector measurements for the Earth-sensor 
(Eq.2b) the Sun-Earth dihedral angle,  , is also needed. 
Calculation of this angle from two distinct i measurements of 
the pencil-beams is straightforward as these two measurements 
can be equally weighted as, 

1 2( ) / 2    .                (8) 

3.  Attitude Filtering with Spin Parameters 
 
3.1.  Spin Parameters 

The so called spin parameters are defined as the components 

of the spin axis unit vector, which is  

Tspin
i x y z   1 ,                (9) 

and the spin phase angle  (Fig.3)6). To use the spin 

parameters in the attitude filter, we need to have the attitude 

matrix and spacecraft kinematics in terms of these parameters. 

To derive the attitude matrix in terms of spin parameters we 

start by expressing the transformation from inertial frame to 

spacecraft body frame by a sequence of three Euler angles  , 

  and  in the order 3-2-310). Note that, since we consider 

the motion of a spinning spacecraft here, the Euler angles,  , 

  and  , represent the precession, nutation and spin (or 

phase) angles, respectively11).  In this case, the body axis, bZ , 

of the spacecraft is the design spin axis. For this sequence the 

attitude matrix that transforms a vector from inertial to body 

frame is given as 
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where c( ) and s( ) are cos( ) and sin( )  functions, 
respectively.  

 
Figure 3. Spin axis in the inertial frame and the spin parameters. 

From Eq.(10) we notice that the body bZ axis can be 

represented in the inertial frame by the unit spin axis vector, 
spin
i1 , as 

c( )s( ) s( )s( ) c( )
Tspin

i        1 .       (11) 

Then, it is straightforward from Eqs.(9) and (11) that 
trigonometric functions of the Euler angles relate to the 
components of the unit vector along the spin axis through the 
following equations (see Fig.3): 

c( ) z  ,                  (12a) 

2 2s( ) x y r    ,              (12b) 

2 2
c( )

x x

rx y
  


,              (12c) 

2 2
( )

y y
s

rx y
  


.              (12d) 

These four equations constitute the basis for expressing the 

attitude matrix in terms of the spin axis parameters. Obviously, 

the direction of the spin axis is determined only by  and 
and is not dependent on the spin phase angle  .  In fact, a 

rotation matrix that takes spin
i1  to spin

b1 can be defined by just 

these two angles. On the other hand, to determine the full three-

axis attitude of the spacecraft and the attitude matrix, we need 

to include the phase angle. By substituting the trigonometric 

relations of Eq.(12) in Eq.(10) while leaving the terms that 

include the phase angle we obtain 
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.  (13) 

Therefore we have the attitude matrix in terms of the spin 
parameters. We call this attitude representation for the spin 
spacecraft the -xyz   representation. 

To derive the kinematics equations for the spin parameters 
we use the well-known differential equation for the attitude 
matrix in Eq.(13) (or direction cosine matrix –DCM) 12) 

b b
i iA A    
  .                (14) 

After a series of calculations - refer to Ref.6) for details - we 
obtain the kinematics equation for the spin spacecraft in terms 
of the spin parameters, 

s( ) ( ) c( ) s( )
x y

xz yc xz y
x

r r

            
   

 ,    (15a) 
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x y

yz x yz x
y

r r

            
   

 ,    (15b) 

s( ) c( )x yz r r      .             (15c) 

 s( ) c( )z y x

z

r
        .           (15d) 

3.2.  Unscented Kalman Filtering with Spin Parameters  
The UKF is a nonlinear filtering method. Its accuracy for 

three-axis attitude estimation has been proven extensively in 
literature13,14). It does not need any linearization and is valid to 
higher order estimation of the Taylor series expansion than the 
Extended Kalman Filter (EKF). Compared with the EKF’s 
first-order accuracy, the estimation accuracy of the UKF is 
improved to the third-order for Gaussian data and at least 
second-order for non-Gaussian data15).   

Specifically for spin spacecraft attitude estimation the UKF 
is attractive as it is capable of dealing with longer measurement 
interruptions than the EKF16). This is advantageous for slow-
spinning spacecraft attitude estimation in the absence of 
magnetometer measurements. For instance, Sun and Earth 
sensors produce only a single measurement per spin period.  

The state variables for the UKF are the spin parameters and 
the vector of body angular rates with respect to the inertial 
frame, 

 
T

x y z   X =  .           (16) 

The UKF is derived for discrete-time nonlinear equations, so 
the system model is given by; 

1 ( , )k k kk  X f X w ,           (17a) 

( , )k k kk Y h X v .            (17b) 

Here, kX is the state vector and kY  is the measurement 

vector. Moreover kw  and kv are the process and 

measurement error noises, which are assumed to be Gaussian 

white noise processes with covariances   Q k  and  R k , 

respectively. The filtering equations for the UKF can be found 

in Ref. 15).   

We estimate the inertial attitude of the spacecraft. The 

process is propagated using the discrete-time versions of 

Eq.(15) and the Euler’s dynamics equation which is required in 

the absence of gyros, 

 1 .J J      N               (18) 

Here, J  is the inertia matrix of the spacecraft and N is the 
torque vector, which is the sum of the external disturbance 
torques such as those induced by solar radiation pressure and 
control torques, if there are any. We shall note that, in this study, 
the filter is not given the external disturbance torque values and 
there is no control torque input for the specific period when the 
sensor measurements are collected.  

The measurement model for the UKF is as given in Eq.1.  
3.3.  Norm Constraint 

The spin axis direction, which is represented by a unit vector 

in the inertial frame, is a part of the spin parameters 

representation. Clearly this estimated unit vector, ˆ spin
i1 , must 

satisfy the spherical norm constraint, 

ˆ 1.spin
i 1                 (19) 

In Ref.6) we show that if the norm constraint is initially 
satisfied, the solution for the kinematics (Eqs.15a-15c) will 
theoretically satisfy the constraint all the time. Notwithstanding, 
in practice, due to measurement biases, spin-axis tilt and 
unmodeled external disturbance torques the norm constraint for 
the estimated spin axis direction terms might be violated. 

In this study, we suggest two methods for satisfying the 
norm constraint for the spin-axis direction terms: Brute force 
normalization and Lagrange multiplier method. 
3.3.1.  Brute Force Normalization  

Brute force normalization is simply unitizing the estimated 
spin-axis direction after each recursive step, 

ˆ ˆ ˆ/spin spin spin
i i i1 1 1 .               (20) 

Although this is a first-order approximation, usually its 
accuracy is sufficient as the SpinUKF estimates are expected to 
be close to the correct estimate of the spin-axis orientation 
vector.  
3.3.2.  Lagrange Multiplier Method  

Another method for satisfying the norm constraint is to 
introduce a Langrage multiplier in the filtering equations17). In 
Ref. 17) the method is introduced for a linear Kalman filter. 
Here, we derive the equations for the Lagrange multiplier 
method when it is implemented as a part of the UKF. The 
optimal Lagrange multiplier is defined as 

  
 1
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and the UKF gain is modified as 

   1*
, / 1 ,

ˆT T T
k xy k k k k k yy k k k kK P x P 



     ,      (22) 

to satisfy the norm constraint, whose defined value is 1l  . 

Here k  is the Lagrange multiplier, k is the innovation 

vector, k is the normalized innovation as 1
,

T
k k yy k kP    , 

,yy kP is the innovation covariance, ,xy kP is the cross correlation 

matrix and ˆ
k
X is the predicted state vector at discrete time 

step of k. The asterisk shows that the gain is modified and 

different from the unconstrained UKF gain kK .  
The state estimation covariance is given by the Joseph 

formula:  

*
kP   

     1
* * * *

, , , ,

T T
T T

k k xy k xy k k k xy k k xy k k kP K P P K K P P P R K
       

. (23) 

Eqs.(21-23) are given for the norm constrained UKF in 

general case. In our problem only a part of the state, which is 

for spin-axis direction unit vector terms, is subject to the 

constraint as in Eq.(19). Thus the state vector, ˆ
k
X , cross 

correlation matrix, ,xy kP , UKF gain, *
kK , and state estimation 

covariance *
kP must be partitioned. In this case the Lagrange 

multiplier is calculated using only ˆ spin
i1  instead of full state 

vector X̂ and the corresponding first three rows of xyP . The 

Kalman gain and state estimation covariance are calculated 

independently for the spin-axis direction terms and the rest of 

the states. A similar procedure is described in detail for linear 

Kalman filter in Ref.17) (Section III).  
   

4.  Evaluation with Real Data 
 

Table 1 gives the estimated spin-axis attitude by different 
algorithms for CONTOUR in terms of the right ascension (RA) 
and declination (DE) angles. The attitude is estimated over the 
Earth’s mid-latitude region. T-S is the batch spin-axis 
estimation method proposed by Tanygin and Shuster in Ref.18). 
Variations of the SpinUKF include the unconstrained filter, 
“SpinUKF (UC)”, the filter with brute force normalization for 
the spin-axis direction terms, “SpinUKF (BF)”, and the filter 
that incorporates Lagrange multiplier method for satisfying the 
norm constraint, “SpinUKF (LM)”. The results for the 
SpinUKF variants and also the TRIAD are mean values of the 
spin-axis attitude estimates over the period.  

The attitude estimation results in Table 1 show that the 
SpinUKF produces consistent results with those of the T-S and 
TRIAD algorithms. The SpinUKF estimation results are 
0.023 and 0.098  in arc-length distance away from the values 
estimated with the TRIAD and T-S algorithms, respectively.  

Measures for satisfying the norm constraint for spin-axis 
direction unit vector affect the estimation results, but only in a 
small quantity when the attitude is estimated over Earth’s mid-
latitude region. The estimation results for an algorithm with 
norm constraint differ only 3 arcsec from those of the 

unconstrained algorithm. We also see this in Fig.4, which 
presents spin-axis attitude estimation results for SpinUKF (UC) 
and SpinUKF (LM) over the mid-latitude region. 

Effects of using different methods for norm constraint (e.g. 
brute force normalization or Lagrange multiplier method) on 
the attitude estimation accuracy is negligible in this case. Both 
the SpinUKF (BF) and SpinUKF (LM) produce identical spin-
axis attitude estimation results.        

  Table 1.  Spin-axis attitude estimation results for CONTOUR. 

  Algorithm    RA & DEC (deg) 
TRIAD 258.61779 29.25748 

T-S 258.66524  29.34231 
SpinUKF (UC) 258.59383 29.26604 
SpinUKF (BF) 258.59470 29.26567 
SpinUKF (LM) 258.59470 29.26567 

 
Figure 4.  Spin-axis attitude estimation by SpinUKF (UC) and SpinUKF 

(LM) over the Earth’s mid-latitude region. 

Although having the norm constraint does not improve the 
spin-axis attitude estimation results over the Earth’s mid-
latitude region greatly, it is necessary when the measurements 
are biased. For the Earth-sensor we know that the 
measurements deteriorate away from the Earth’s mid-latitude 
region because of sensor performance degradations for short 
Earth-scan intervals. Furthermore, the measurement sensitivity 
decreases and the IR biases increase. In fact, this data should 
not be used for attitude-estimation purposes since the sensor 
has been designed and calibrated to ensure specified 
performances over the Earth’s mid-latitude region only.  

Fig. 5 presents the residuals that each EAA produces. It is 

simply the difference between the derived EAA measurements 

and the p value which is predicted by using the attitude 

estimate obtained with the SpinUKF (LM). It can be seen that 

the residuals for “single beta” sin  solution increase outside 

the mid-latitude region.  

Fig. 6 gives the norm error, which is ˆ1 spin
i 1 , for spin-axis 

attitude estimations of SpinUKF (UC) and the variations of the 

calculated Lagrange multiplier for SpinUKF (LM). It confirms 

that the norm condition for the filter is satisfied as long as the 

sensor data is good, even if we do not apply a specific 

normalization method. It is necessary to apply unit-vector 
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normalization to the filter spin-axis attitude estimates in the 

presence of biases in the measurements    

 
Figure 5.  Residuals of the Earth aspect angle 

 
Figure 6. Norm error for SpinUKF (UC) and Lagrange multiplier for 

SpinUKF (LM). 

 
5.  Conclusions 
 
The performance of the SpinUKF, an Unscented Kalman Filter 
for spinning spacecraft attitude estimation, is evaluated with the 
help of in-flight data collected by the spinning spacecraft 
CONTOUR. Different methods for satisfying the spherical 
norm constraint for the spin axis coordinates are investigated. 
The results show that the SpinUKF produces consistent attitude 
estimates with the existing methods such as TRIAD in the 
specific interval where the operational attitude measurement 
data is gathered. It is necessary to aid the filter with a norm 
constraint provision method for spin-axis attitude estimates in 
the presence of biases in the measurements 
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