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Abstract

Résumé

The paper presents an approach for solving the eigenvalue problem of linearised
gyroscopic systems. Starting from a system of » second-order differential equations
of motion, one is lead to an eigenvalue problem represented by an » x n Hermitian
matrix whose eigenvectors are complex, the elements of the matrix being a
function of the frequency parameter. It is first shown that if the Hermitian matrix
satisfies certain properties (which define a gyroscopic-system subclass), the
problem can be readily transformed into the real eigenvalue problem associated
with an nxn real and symmetric matrix. The physical significance of this
transformation is outlined and practical spacecraft applications are quoted to
ilustrate the approach. The method is then extended to the case of a general
Hermitian matrix associated with gyroscopic systems, after reduction of the matrix
to an equivalent 2 x 2 matrix.

On présente une approche pour résoudre le probléme aux valeurs propres dans les
systémes gyroscopiques linéarisés. A partir d’'un systéeme de nr équations
différentielles du second ordre caractérisant le mouvement, on aboutit & un
probléme aux valeurs propres comportant une matrice hermitienne s x n dont les
vecteurs propres sont complexes. les éléments de la matrice étant fonction du
paramétre de fréquence. On montre d'abord que si cette matrice posséde certaines
propriétés. définissant une sous-classe de systémes gyroscopiques. on peut
facilement se ramener A un probléme aux valeurs propres réelles assorties d’une
matrice n x # 4 la fois symétrique et réelle. On souligne la signification physique de
cette transformation et on illustre la méthode par des applications pratiques sur
des véhicules spatiaux. On généralise ensuite la méthode au cas d’une matrice
hermitienne générale associée aux systémes gyroscopiques. aprés avoir réduit cette
matrice 4 une matrice équivalente 2 x 2,
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Introduction

Statement of the problem

The theory for the cigenvaltue problem associated with spinning flexible systems
has received considerable attention since the advent of spinning spacecraft. The
difficulty of the problem stems from the presence of a skew-symmetric matrix in
addition to the symmetric matrices that characterise nonspinning systems, so that,
in general, the resulting eigenvectors are complex. Much effort has been devoted to
date to the reduction of this eigenvalue problem to the standard form that
naturally applies to the nonspinping cases, at the expense of doubling the
dimension of the system to obtain the real matrices that result from a first-order
formulation. This goal seems to have taken precedence over analysis of the
underlying physics. so that aiternative approaches have attracted little attention.

Unification of the structure of the eigenvalue problem of gyroscopic systems can
be achieved by using the second-order form of the differential equations of motion
as a starting point for further devetopment. In this way the eigenvalue problem is
typified by an Hermitian matrix whose ¢lements are a function of the frequency
parameter. It is first shown that this matrix can be transformed directly into a real
symmetric matrix of the same dimension if proper partitioning into blocks of real
and purely imaginary numbers can be achieved. The physical counterpart of this
structure is that the components of the coordinate vector that characterise the
system displacements are either in phase or in quadrature for the natural motions
of the system. Typical spacecraft applications and other examples are treated to
illustrate the theoretical approach.

The above-mentioned transformation is extended to the more general case
which the elements of the Hermitian matrix are full complex numbers. The
transformation is established after reduction of the initial n x n Hermitian matrix
10 an equivalent 2 x 2 Hermitian matrix, which permits.the transformation into a
2 x 2 real and symmetric matrix in one step.

The mathematical and physical considerations presented here were worked oult
in the course of the analysis of a practical problem associated with the
development of the spacecraft to be flown in 1983 as ESA’s contribution to the
Joint ESA:NASA International Solar-Polar Mission (ISPM). The computational
aspects of the method will not be treated here; this particular paper is primarily
concerned with presenting the basic ideas underlying a study that is still in
progress.

When considering the small, force-free motion in the neighbourhood of
equilibrium of a spinning rigid body carrying flexible appendages. the coordinate
vector of the system includes six generalised coordinates to describe the motions of
the rigid body with respect to inertial space. and a set of deformation variables to
depict the oscillations of the appendages. If the latter are considered as
continuum, the equations of motion form a set of ordinary and partial differential
equations, the deformation variables being (continuous) functions of space and
time.

When spatial discretisation of the flexible appendages is performed or when the
corresponding displacement field is represented by assumed functions of space, the
parual differential equations transform directly to ordinary differential equations
and the Lagrangtan formalism provides the linearised equations of motion in the
general form (excluding damping):

Miin+ Gg(r)+ Kgln)=0 {n
where q=(q,. ¢,. ... q,}" is a set of generalised coordinates, and M=M", G=
—G'. K=K "are n x n constant matrices. If the equilibrium is stable, one can seek
a periodic solution to Equation (1) in the form

glt) = X (2}

where X is an n-dimensional constant vector with complex elements, and o is a
real number. By introducing Equation (2) into Equation (1), one obtains
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H{jo)X =0 (3}
with
Hjw) = —e*M + jwG + K {4)

Matrix H is called the ‘impedance matrix’ of the system.
The condition for the components of X to be nonzero is

det H (jw) = 0 (5)

Equations (3) and (5) typify the eigenvalue problem associated with Equation (1),
In principle, to each eigenvalue v calculated from Equation (5) there corresponds
one complex eigenvector X given by Equation (3). Due to the symmetry properties
of matrices M. G and K, matrix H is Hermitian; that is

H(jw) = H(—jw) (6)

This is reflected in the fact that det H is real, so that Equation (5) contains no
imaginary part. Equation (6) shows that the eigenvalues occur in pairs of opposite
xal numbers, and from Equation (3) it follows that the corresponding eigenvectors
“ire complex conjugate -2
Hence, supposing that we can calculate the solutions to Equations (3) and (5),
the real solution to Equation (1) (corresponding to the physical problem) has the
form

= i ¢, I:Xfcos(wzr+q’)1) — Xlsin(o,t + d)x)} (7)

where the coefficients ¢, and ¢, are determined by the initial conditions on the
coordinate vector, X\ and X being the real and imaginary parts of the complex
eigenvector X .

It should be noted that the mathematical properties of the above eigenvalue
problem stem from the fact that complex numbers are introduced as a
mathematical tool in Equation (2) to solve the real problem characterised by
Equation (). This procedure allows the independent time variable to be easily
eliminated as indicated in Equation (3). In so doing, the physical aspect of the
problem is obscured in the formulation of the modal analysis of the system, but the

Il significance of the complex eigenvectors obtained in Equation (3) 1s restored in

\Equatlon , where their real and imaginary parts are isolated as the coefficients of
time fUI‘lCt]OllS that are n;2 out of phase.

Returning to consideration of the system of Equations (3) and (5). we will briefly
summarise the classical method of solution. The usual procedure in dynamics is to
double the dimension of the coordinate vector, considering the real and imaginary
parts of Equation (3) separately in order to deal only with real and constant
matrices (independent of ). This transformation can be effected in different ways.
In Reference 3. for instance. the 2n-dimensional vector

-]

1s introduced and the equivalent double-sized system of equations is obtained
[A - E2r|j(”J £=0

where Z is the complex eigenvector corresponding to the coordinate vector z. and
where
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Simple transformation for
special Hermitian matrices
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E,, being an m > m unit matrix. Matrix 4 is a 2in x 2n real matrix and standard
computer programs can be used to solve this classical eigenvalue problem. In
Reference 4 a different combination of the above matrices is treated. and
correspondance is established between the initial n-dimensional problem and two
real and symmetric 2n x 2n matrices.

In all cases this procedure is systematic and only requires the use of existing
computational methods. but the efficiency of the technique is not optimal. From
Equation (7) and the definition of vector z. if Z% and Z!are the real and imaginary
parts of the cigenvector Z, . we have

. X-i , X-R
R

This relationship between the components of the eigenvectors Z, and X, is
therefore recalculated indirectly n times for an n-dimensional eigenvalue problem.

In this section we will restrict ourselves to the class of gyroscopic systems for
which the transfer matrix contains. after rearrangement. two diagonal blocks «
real numbers and purely imaginary numbers elsewhere, as shown below. This class™
ol system is wider than il may first appear, as illustrated by the practical examples
given later.

When the partitioning mentioned above is possible. the impedance matrix can
be written in the form

. A ) .fB("’ﬂ *
ey = [—,fBT(m) Do) | )

If matrix H is of dimension nxn. the symmetric matrices 4 and D are of
dimension p x pand g x . respectively (¢ =»n — p). the dimension of B being p x g.

If one considers the H matrix as a linear operator on the coordinate vector X,
one can write

Y=HX *(9)

Defining the matrix T with the previous notation as

. [E, 0
r—{o _j_EJ (10)

one can proceed to the following linear coordinate transformation of the system of
Equations (9) %:

X =TX* Y=TY* (11)

so as to have

Y*=H*X*=T 'HTX* (12}
with
. Afm) B()
H* o) = |:BT(0)) D(m)j|

where the nxn matrix H* is real and symmetric. Since the transformation in
Equation (12) is a similitude, the eigenvalues of matrices H and H* are identical.
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The eigenvectors X* of matrix H* are real and the corresponding eigenvectors X
of matrix H are given in Equation (11).

It is therefore immediately apparent from the structure of matrix T that the
components of the eigenvector X are either real or purely imaginary numbers. By
simple mnspection of Equation (7). the meaning of this structure can be perceived:
the physical displacements corresponding to the components of the original
coordinate vector are either in phase or in quadrature for the natural motions of
the system. In this particular case, the total number of nonzero elements in the two
vectors X Fand X !in Equation {7) cannot exceed n for each mode, which makes the
transformation to a 2n-dimensional system suggested by the classical approach
su-erfluous.

The technique of reduced impedance matrices will now be briefly described since Reduced gyroscopic problem
several of the following examples are based on this approach, which is very
convenient when distributed coordinates are used to describe deformations of the
system.

If one ts primarily interested in the reactions of the central body to appendage
deformations in order to study, for instance. the system’s attitude stability or
pointing accuracy, enly that part of the coordinate vector describing the motion of
the reference frame must be considered. The number of generalised coordinates

hen reduces to six if the reference frame is fixed in the central body. and to only
“~three if the reference frame is fized (inertially) at the centre of mass of the complete
structure.

By partitioning the coordinate vector and the corresponding impedance matrix
in Equation (3). the deformation coordinaltes can be eliminated from the equations
that describe the motion of the reference frame.

Then

vy [AUe)  BGeY]| X,
HU(!))X = I:CU(')) D(j(l))] |:Xz:| (13)

where, in general, the dimensions of vectors X, and X, are p and g=n—p.
respectively. By algebraic elimination of X ,. one obtains the foliowing equivalent
equation for X |: '

[A{jw) — B(jv) D™ (jw) Clj)] X, =0 (14)

e above matrix being called the ‘reduced impedance matrix’.

The order of the system is now reduced to the dimension of X,. independently of
the initial dimension. When the eigenvalue problem is solved for the components
of X |, the remaining part of the coordinate vector is given by

—

X, = -D o) Cli} X, ' (15}

It must be noted that the zeros of the determinant of the reduced impedance
matrix give the natural frequencies corresponding to the eigenmodes in which the
selected variables participate. In this case, the so-called ‘local modes’ (deformation
of the appendage without reaction of the central body) are eliminated. It is
assumed here that all the variables of the initial coordinate vector are coupled
through Equation {13). so that no singularity arises in the course of the reduction,
the decoupled equations being analysed separately.

When the flexible parts of the system are treated as a continuum. the
deformations are described by distributed coordinates which are the solutions of
partial differential equations. Equations (13)-(15) remain valid, provided the
submatrix symbols are replaced by linear operators®~ 7. The elements of the
resulting impedance matrix are generally transcendental functions of ¢». whereas in
the discrete approach they are polynomial fractions in . In all cases the reduced
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Examples
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Figure |
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impedance matrix remains Hermitian, which follows from the partitioning in
Equations (13) and {14). A specific example of this type is worked out in detail in
Reference 8.

An asymmetric, spinning rigid body

The principal axis frame is chosen as the reference frame. The corresponding
inertias are I, I, and [, If the body spins nominally about the third axis with
nominal spin velocity ®, the Lagrangian formalism provides two coupled
linearised equations in the form of Equation (1) for the small angular
displacements ¢, and ¢/, (Tait-Bryan angles) that characterise the nutational
motion of the body, with

M= I, 0O G = 0 —awo{f, +1;~15}
0 I, o (I, +1,—1,) 0

K = ey (I,—1,) 0
0 wi(l—1,)

To each nonzero coefficient in G there corresponds one zero coefficient in M and
K. so that the corresponding impedance matrix H has the property developed
above, in the second section of this paper. Then, introducing the above matrice
into Equation (4),

{1, —1,) i —1,w? —jowy (I, +1, -1
HUw)=|:3 2)ws—1 obdy iy 3):|

Jowg (I, +1,-1,) (I, — 1) wi—1,07

The 2 x 2 transformation matrix

' [(l) OJ

provides, according to Equation (12),

(I3 — 1) i~ 1,0? —ww (I, +1,-1,)
H*((r))=[ a— ) oy -1, olfy 1y 3]
—wo, (I, +1,—1,) (Iy—1 )i —T,m?

The solution of det H*(¢1) =0 gives the two eigenfrequencies

B B T, N/,
) = Wy Wy = (g l_ - I_ -
1 2

and if (, and (), represent the components of one eigenvector associated with the
above matrix H, Equation (11} gives

(

=0, 0*=j0,

Since (¥ and 0% are real numbers. (), is a real number and ¢, is a purely imaginary
number. According to Equation (7}, the resulting angular displacements 9,(r) and
0,(t) must be in quadrature.

The purpose of this trivial example is to illustrate the modal-analysis procedure
when advantage is taken of this particular form of the impedance matrix. The
following examples are taken from the literature to show the wide variety of
practical problems that are compatible with the above simplifying conditions,

The Geos satellite (Fig. 1)

In Reference 6. the reduced impedance matrix of the Geos satellite is given
explicitly. This spinning system consists of one asymmetric rigid body to which
two 20m cable booms are attached symmetrically. In the nominal configuration,
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the cables are parallel to the axis of intermediate inertia of the main body. There is
a vertical offset between the centre of mass of the main body and the attachment
points of the cables. The matrix is derived on the basis of a continuous approach.
The reference frame is the central axis frame of the complete undeformed satellite.
In the reduced matrix, only four variables are coupled - {,, {,. 0, and f},. which
describe the lateral oscillations of the central body with respect to the total
system’s mass centre and its nutational motion. The general form of this matrix
with the nominal spin set equal to 1 is as follows:

— (0 + 1) (m+f7) —2jw (m+f)) —Z2jerd f (2 +1)df,
h .
Yo (m+ 1) (e +1) -4, —adf, “jwd,
A
) =1, — [e? —jer(l +1,—1,)
od _4d 374 1 1 Hl—dy
dodf s (e = 1) g, -4 4%, 2o,
2 : i d £ Joll +1, —1,) fi=1 -,
(Wi 1ds, Yerd ], + 24w d? —d (£ 1)f,

where m is the mass of the total system. {,. {, and I, are the principal inertias of
the main body, d is the vertical offset between the cable-attachment points and the

1ain body’s centre of mass, and £, (). f,(«) and g, (w) are transcendental functions
“~of w which arise from the solution of the partial differential equations describing
the cable-boom motions.

This matrix contains only real and purely imaginary coefficients. The
corresponding coordinate vector is g=(J,. {,. #;, 0,)" By rearranging the lines
{and the columns accordingly) such that ¢ =(l,. 0,.(,.0,)"is the new vector. the
particular matricial structure of Equation (8) is obtained and the transformation of
the second section applies. The impedance matrix associated with the transformed
coordinate vector g* =(l,. 0),,j,.j0,)"is real and symmetric, as shown below:

— [+ 1) {m+f,) (2 +1}ydf, =2t (m+f)) —2wdf,
. I,—1, - 1,07 : ofl, +1,~-1,)
S TR . vl
(r —d2 b1, 2ody + 20 d2f,
— 2o (m+f)) 2ed [ —(e? + 1)—4f, —4df,
S aill,+1,~13) o I=1,—1 ¢
dodf, +2mdif, df, —(w?—1)g, —4d*f,

The ISPM spacecraft (Fig. 2)

In Reference 8 the complete derivation of the reduced impedance matrix for the
ISPM spacecraft through the continous approach is given in detail. The spacecraft
modelling resembles that for the Geos satellite described in the preceding example,
with two major modifications. First. a long axial antenna is cantilevered from the
main body along the spin axis; secondly, there is no vertical offset between the
attachment points of the cable booms and the centre of mass of the system
composed of the central body and the axial antenna. The reference frame is the
central axis frame of the complete undeformed satellite,

The re-partition of real and purely imaginary numbers in the impedance matrix
corresponding to the coordinate vector defined in the previous section is identical
to that of the Geos matrix. although the expressions for the coefficients are more
complicated. Setting d=0 in the latter and adding the impedance matrix of an
axial boom® provides the complete matrix for the satellite. The influence of that
boom on the central body is reflected in transcendental functions of . The
constderations for Geos also apply to the treatment of this eigenvalue problem.
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Figure 2

Figure 3
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A typical literature case (Fig. 3)

In Reference 4 the following example is quoted to 1llustrate the solution of the
eigenvalue problem of gyroscopic systems via a first-order formulation. The
system consists of a symmetric spinning rigid body (moments of inertia 4. C. C)
containing two equal masses m, 2 lying at distances +a from the centre of mass of
the rigid body. At equilibrium (spin rate «,). the masses are aligned with the spin
axis and each is connected to the rigid body by four identical springs (stiffness k/4)
so that lateral oscillations may occur. To study the antisymmetric motions of the
two point masses, the lollewing hybrid coordinate vector is chosen. the reference
frame having its third axis along the spin axis:

;
G = Uyt W Wy 0, 005)

where u, and u, are the components in the reference frame of the displacements of
the masses in the equatorial plane, w, and w, the components of the
corresponding inertial velocities. and ¢, and ¢, are the components of tl
rotation vector of the rigid body; the last four are quasi-coordinates. The followmg
first-order formulation is then obtained:

1§+ Gg=0
with

k 0 0 0 0 0
0 k 0 0 ¢ 0
0 0 m 0 0 md

I =
0 0 0 m —nma 0
0 0 0 -ma A 0
0 0 ma [¢] 0 A
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v} — ki, -k 0 0 0
ke, 0 0 —k ¢] 0
k 0 0 —me,, Mo, 0
G = -
0 k me, 0 0 mu e,
0 0 — My, 0 0 (C— Ay,
0 ] 0 —macy | —(C— Ao, 0

where A'= A+ nia? is the moment of inertia of the whole system about a transverse
4x1s,

Although a second-order form has been assumed so far for the equations of
motion. so that the dimension of the coordinate vector is kept to a minimum. it
can be seen in this particular case of first-order formuiation that the property
explained in the second section can be retrieved by simple transformation of the
above vector.

Introducing the new vector

g = ~jq

“The eigenvalue problem of the above system. with previous notations, can be
expressed as

[-o ! +jG]X =0

where X7 is the cigenvector corresponding 10 the new vector 4. The above
impedance matrix is Hermitian and contains only real or purely imaginary
numbers, By simply rearranging the columns (and the corresponding lines), the
typicat structure of Equation (8} is obtained and the transformation of Eguation
(10) applies. The transformed coordinate vector ¢*. which can be expressed in
terms of the original variables as

¢F =Gy jwa o~y —w o — o)
is associated with a real and symmetric matrix. Note that this transformation is

not unique as several combinations of lines and columns lead to an equivalent
result. Explicitly:

-
— ke 0 0 — ke, -k 0
0 —ma ma o k Mg HEd (g,
0 ma e Al 0 —mdcy, (C— Ay,
— ke k 0 — ki 0 0
—k ng —maci, 0 =k —mac
0 1 a t, (C— A ), 0 —d —A'n

When the partitioning of the impedance matrix cannot be performed as in

Equation (8), which is the case if the matrix contains fully complex numbers (real
and imaginary parts non-zero). a different procedure can be adopted to retrieve a
real and symmetric matrix without doubling the dimension of the original
coordinate vector.

By following the reduction procedure in Equations {13) and {14). it is possible to
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reduce the original n x n impedance matrix to a 2 x 2 Hermitian matrix. Once the
eigenvalue problem has been solved for this reduced system, the complete
cigenvectors of the system can be calculated by matrix-multiplication operations,
as shown in Equation {15). As noted earlier the modes in which the two selected
variables do not participate are eliminated from the solutions of the eigenvalue
problem by this technique. In this respect. it is advantageous for spacecraft
applications to retain the true coordinates that describe the attitude motions of the
reference frame (fixed in the central body). In so doing, the general form of the
reduced 2 x 2 matrix H is

Hjw) = [ a. Ct{jb} {16)

where a. b, ¢ and d are real functions of the frequency so that the off-diagonai
elements are complex. Matrix H is transformed into matrix H* according to the
scheme of Equations {11) and (12). where matrix 7 must be replaced by the
following matrix S:

§|cosw  Jsmy (17)
sin i —fcos i
where 1 is a parameter. Explicitly,
—
[ ) - ¢ . fa—d . |
acos” i +d sin t,!/+§sm2tjz j Ts1p2y‘1—ccos2d;
+b
H* (w) = ‘ (18)

b

—d . o
— (aT sin 21 — ¢ cos 2!};) a51n2[p+dcosllj;—%sm i

One is now free to choose the parameter ¢ such as to cancel the imaginary part of
the off-diagonal elements, i.e.

1 2
= 3 arc tan &—Ld (19)

If this condition is satisfied, the above matrix H* is real and symmetric, so that the
elements 0* and 0% of the corresponding eigenvectors are real. The cor

respondance between the latter and the original variables is given by thw-
transformation in Equation (17),

0, = 0F cosfp + jO¥Fsiny
(20)
), = 0Fsiny — jO%cosy

From this equation it is clear that the eigenvectors associated with matrix H tn
Equation (16) are complex. so that the phase between their respective components
may take on arbitrary values and depends on the particular mode considered. This
explains why the transformation matrix S in Equation {17} must depend on the
eigenfrequency [through the parameter i defined in Equation (19)] in order to
provide the new variables (% and 0% which are in phase. The special case of the
second section of this paper is retrieved if =0, so that the components of every
eigenvector are in quadrature and the transformation is independent of the
eigenfrequency.

The connection between the parameter ¥ and the geometry of the system will
now be examined for a specific example (Fig. 4). We will consider again the case of
the Geos satellite with the following modifications: the vertical offset d between the
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system’s centre of mass and the cable booms is zero at equilibrium and the
attachment points of the latter are rotated by an angle ¢ around the spin axis
{axis 3) so that they no longer coincide with the axis of intermediate inertia of the
matin body. If 4 is set to zero in the Geos transfer matrix, the last two equations are
decoupled from the first two. If the reference frame is also rotated by an angle ¢
about the spin axis, so as to be aligned with the cable booms at equilibrium, the
following impedance matrix is obtained for the coordinates ¢, and {, which
describe the nutational motion of this reference frame:’

- } .
2

i (Iy—1,—1, w?)cos? ¢ I, —1)(1-0?) 51"2 ¢
+ (Iy—1,—1,w)sin? ¢ —ji,+L,-He

—(w*—1)g,
in2
(1,~ 1) (1-0?) sz ¢ (Iy—1,—1, w?)sin? ¢
+i(l, +1,— 1) +{I,—1,~ 1, w*) cos? ¢

where I, [,. I are the principal inertias of the main body and g, is a
transcendental function of « which reflects the interaction between the cable
booms and the central body. The above matrix has the form in Equation (16), so
that the corresponding parameter #, calculated from Equation 19 is

1 {(I,—1,)sin2 ¢
= —_arct
~ Y= —jarc M, —T)cos2—g,

On the other hand, the angular position of the principal axis frame of the whole
system with respect to the reference frame is given at equilibrium by

(I,—1,)sin2¢
(I,—I)cos2¢p—1I.

|
= —_arcta
07 5 arc tan

where I the inertia of the two cable booms with respect to the spin axis.
Comparing the above formulas, it can be seen that the angle i determines the
location {with respect to the reference frame) of the principal axis frame of the
modified system in which the actual inertia of the cable booms has been replaced
by their effective inertia. The latter is associated with the torque exerted by the
cables on the main body and depends. of course, on the mode considered. The
following special cases are worthy of note: if ¢»=0 (Geos example) or if I, =1,
(symmetric body), ¢y =0 so that no transformation is necessary. If y, =0 {no cable
booms). = — ¢ which means that for a rigid body the reference axes must be
parallel to the principal axes for the impedance matrix not to contain full complex
numbers (asymmetric, spinning rigid body example).
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Conclusion
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