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Solving Gyroscopic Eigenvalue Problems with a Real
Symmetric Matrix of the Same Dimension

AbStract The paper presents an approach for solving the eigenvalue problem of l inearised
gyroscopic systems. Starting from a system of n second-order differential equations
of motion. one is lead to an eigenvalue problem represented by an n x r Hermitian- 
matrix whose eigenvectors are complex. the elements of the matrix being a
function of the frequency parameter. It is f irst shown that if the Hermitian matrix
satisfies certain properties {which define a gyroscopic-system subclass). the
problem can be readily transformed into the real eigenvalue problem associated
with an n x r real and symmetric matrix. The physical significance of this
translormation is outl ined and practical spacecraft applications are quoted to
il lustrate the approach. The method is then extended to the case o[ a general
Hermitian matrix associated with gyroscopic systems. after reduction of the matrix
to an equivalent 2 r 2 matrix.

R6SUm6 On pr€sente une approche pour rdsoudre le probldme aux valeurs propres dans les
systemes gyroscopiques l in6aris6s. A partir d'un systdme de r 6quations
diffdrentielles du second ordre caracterisant le mouvement. on aboutit: i  un
probldme aux valeurs propres comportant une matrice hermitienne ,1 x n dont les
vecteurs propres sont complcxes. lcs dl6ments de la matrice 6tant fonction du
paramdtre de fr6quencc. On montre d'abord que si cette matrice possdde certaines
propridtds. ddfinissant une sous-classe de systdmes gyroscopiques. on peut
facilement se ramener d un probldme aux valeurs propres r6elles assorties d'une
matrice n x I d la fois sym6trique et r6elle. On souligne la signification physique de
cette transformation et on i l lustre la m6thode par des applications pratiques sur
des v6hicules spatiaux. On g6n6ralise ensuite la m6thode au cas d'une matrice
hermitienne g6n6rale associ6e aux systdmes gyroscopiques. aprds avoir reduit cette
matrice d une matrice dquivalente 2 x 2.
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Introduction

Statement of the problem

' .

The theory for the eigenvalue problem associated with spinning flexible systems
has received considerable attention since the advent of spinning spacecraft. The
diff iculty of the problem stems from the presence of a skew-symmetric matrix in
addition to the symmetric matrices that characterise nonspinning systems. so that.
in general, the resulting eigenvectors are complex. Much effort has been devoted to
date to the reduction of this eigenvalue problem to the standard form that
naturallv applies to the nonspinning cases, at the cxpense of doubling the
dimension of the system to obtain the real matrices that result from a l irst-order
formulation. This goal seems to have taken precedence over analysis of the
underlying physics. so that alternative approaches have attracted l itt le attention.

Unification of the structure of the eigenvalue problem of gyroscopic systems can
be achieved by using the second-order form of the differential equations of motion
as a starting point for further development. ln this way the eigenvalue problem is
typified b,v'. an Hermitian matrix whose elements are a function of the frequency
parameter. It is f irst shown that this matrix can be transformed directly into a real
symmetric matrix of the same dimension if proper partit ioning into blocks of real
and purely imaginary numbers can be achieved. The physical counterpart of this
structure is that the components of the coordinate vector that characterise the
system displaoements are either in phase or in quadrature for the natural motions
of the system. Typical spacecraft applications and other examples are treated to
il lustrate the theoretical approach.

The above-mentioned transformation is extended to the more general case'
which the elements of the Hermitian matrix are full complex numbers. Tir
transformation is established after reduction of the init ial r x n Hermitian matrix
to an equivalent 2 r 2 Hermitian matrix. which permits,the transformation Into a
2 x 2 real and symmetric matrix in one step.

The mathematical and physical considerations presented here were worked out
in the course of the analysis of a practical problem associated with the
development of the spacecraft to be flown in 1983 as ESA's contribution to the
joint ESA NASA International Solar-Polar Mission (ISPM). The computational
aspects of the method wil l not be treated here; this particular paper is primarily
concerned with presenting the basic ideas underlying a study that is sti l l  in
progrcss.

When considering the small. lorce-free motion in the neighbourhood of
equil ibrium of a spinning rigid body carrying flexible appendages. the coordinate
veclor ol the system includes six gencralised coordinates to describe the motions of
the rigid body with respect to inertial space. and a set of deformation variables to
depict the oscil lations of the appendages. If the latter are considered as.
continuum. the equations of motion form a set of ordinary and partial differenti i
equations. the deformation variables being (continuous) functions of space and
nme.

When spatial discretisation of the flexible appendages is performed or when the
corresponding displacement field is represented by assumed functions of space. thc
partial differential equations transform directly to ordinary differential equations
and the Lagrangian formalism provides the l inearised equations o[ motion in the
general lbrm (excluding damping):

M q \ l  +  c i t l t )  +  K 4 ( r )  : 0

where  q : ( r .J , .  42 . . . .4 , ) '  i s  a  se t  o f  genera l i sed  coord ina tes .  and,  M:Mt .  G:
Gr, K: Kr are n x r constant matrices. [f the equil ibrium is stable. one can seek

a periodic solution to Equation (1)in the form

q( t )  :  x  e t "  '

where f is an r-dimensional constant vector with complex elements. and lr is a
real number. By introducing Equation (2) into Equation (l ). one obtains

( l )

(2)
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H Q a t ) X  : 0

wlth

H U u ) :  0 2 M +  j ( o c + K

Matrix H is called the 'impedance matrix' of the system.
The condition for the components of X to be nonzero is

det H (/(r, :0

Equations (3) and (5) typify the eigenvalue problem associated with Equation (l).
In principle. to each eigenvalue @ calculated from Equation (5) there corresponds
one complex eigenvector X given by Equation (3). Due to the symmetry properties
of matrices M, G and K, matrix H is Hermitian; that is

H A(D) : Hr( - j(Dl

This is reflected in the fact that det It is real, so that Equation (5) contains no
imaginary part. Equation (6) shows that the eigenvalues occur in pairs of opposite

, ral numbers, and from Equation (3) it follows that the corresponding eigenveclors
Yre complex conjugate 1.2.

Hence, supposing that we can calculate the solutions to Equations (3) and (5),
the real solution to Equation (1) (corresponding to the physical problem) has the
form

(3)

(4)

(5)

(6)

q(') :,I, c, 
fxicos 1.,,r+q,,)Xjsin(r , r"r  +, / , ) ] (7)

where the coefficients c, and tf, are determined by the initial conditions on the
coordinate vector, Xj and Xj being the real and imaginary parts of the complex
eigenvector X,.

It should be noted that the mathematical properties of the above eigenvalue
problem stem from the fact that complex numbers are introduced as a
mathematical tool in Equation (2) to solve the real problem characterised by
Equation (1). This procedure allows the independent time variable to be easily
eliminated as indicated in Equation (3). In so doing, the physical aspect of the
problem is obscured in the formulation of the modal analysis of the system. but the

.- _ l l significance of the complex eigenvectors obtained in Equation (3) is restored in-Equation 
(?). where their real and imaginary parts are isolated as the coefficients of

time functions that are rr2 out ofphase.
Returning to consideration of the system of Equations (3) and (5). we wil l briefly

summarise the classical method of solution. The usual procedure in dynamics is to
double the dimension of the coordinate vector, considering the real and imaginary
parts of Equation (3) separately in order to deal only with real and constant
matrices (independent of t,.,). This transformation can be effected in different wavs.
In Reference 3. for instance. the 2n-dimensional vector

is introduced and the equivalent double-sized system ofequations is obtained

lA E2^jr't lZ = 0

where Z is the complex eigenvector corresponding to the coordinate vector z. ano
where

":l:,]
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Simple transformation for
special Hermitian matrices

E- being an n x lr unit matrix. Matrix ,4 is a 2rr x 2r real matrix and standard

computer programs can be used to solve this classical eigenvalue problem. In

Reference 4 a different combination of the above matrices is treated. and

correspondance is established between the init ial n-dimensional problem and two

real and symmetric 2rr r 2rr matriccs.

In all cases this proccdure is systematic and only requires the use of existing
computational methods. but the efficiency of the technique is not optimal. From
Equation (7) and the definit ion of vector ;. i f Zl and Zt,are the real and imaginary
parts ofthe eigenvector -Z,. we have

7 R

I I  ( i l t )  :

If matrix H is of dimension ri x n. the symmetric matrices ,4 and D are of

dimension p r p and r7 x 11. respectively (q=r p). the dimension ol E being p r 4.
lf one considers the H matrix as a l inear operator on ihe coordinate vector X.

one can write

This relationship between the components of the eigenvectors Z, and X, is

therefore recalculated indirectly r t imes for an n-dimensional eigenvalue problem.

ln this section we wil l restrict ourselves to the class of gyroscopic systems for

which the transfer matrix contains. after rearrangement. two diagonal blocks r

real numbers and purely imaginary numbers elsewherc. as shown bclow. This clasi
of system is wider than it may first appear. as i l lustrated by the practical examples

Srven la le r .
When the partit ioning mentioned above is possible. the impedanee matrix can

be written in thc lbrm

f  - M ' a  - M ' K l
' 4 : l  E ^  o  l

: [ ?r"f '::1""i::]

I  e(r,r) lB(r,r) l
I  ia '( , ,  Dl,) )

. r : lE ,  0  I
L 0  j E n )

(8)

Y : H X

Defining the matrix T with the previous notation as

' ( e )

(10)

( l l )

(r2l

one can proceed to the following l inear coordinate transformation of the system of

Equat ions  (9 )  ' ;

so as to have

y * : H * x * : T  t H T X *

with

,.t,t:ll\,\ ;['ri]
where the fl x n matrix H* is real and symmetric. Since the transformation in
Equation (12) is a similitude. the eigenvalues of matrices H and H* are identical.
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The eigenvectors X* of matrix H* are real and the corresponding eigenvectors X
of matrix H are given in Equation (1 1).

It is therefore immediately apparent from the structure of matrix Ithat the
components of the eigenvector ,\ are either real or purely imaginary numbers. By
simple inspection of Equation (7). the meaning of this structure can be perceived:
the physical displacements corresponding to the cbmponents of the original
coordinate vector are either in phase or in quadrature for the natural motions of
the system. In this particular case. the total number of nonzero elements in the two
vectors Xj and Xlin Equation (7) cannot exceed ,r for cach mode. whidr makes the
translbrmation to a 2t-dimensional system suggested by the classical approach
su-erfluous.

The technique of reduced impedance matrices wil l now be briefly described since
several of the following examples are based on this approach. which is very
convenient when distributed coordinates are used to describe delormations of the
system.

lf one is primarily interested in the reactions of the central body to appendage
deformations in order to study. for instance. the system's attitude stabil ity or
pointing accuracy. only that part of the coordinate vector describing the motion of
the reference frame must be considered. The number of generalised coordinates
\en reduces to six if the reference lrame is fixed in the central body. and to only

\three if the reference frame is fi ied (inertially) at the centre of mass of the complete
structure.

By partit ioning the coordinate vector and the corresponding impedance matrix
in Equation (3). the deformation coordinates can be eliminated from the equations
that describe the motion of the reference frame.

Then

H ( i ' l x : ( 1 3 )

where. in general. the dimensions of vectors X, and X, are p and q:n p,
respectively. By algebraic elimination of Xr. one obtains the following equivalent
equation for Xr.

lAQtol BQat) D- | (jt ' t) C (jt,t l f X, : 0 (  t 4 )

Reduced gyroscopic problem

Io t , ' t  B( / , , ) l  [ i  I
Lc(/,,) D(l(,41 L.\ ' ,  I

re above matrix being called the'reduced impedance matrix'.
! 

The order of the system is now reduced to the dimension of X,. independently of
the init ial dimension. When the eigenvalue problem is solved for the components
of X,, the remaining part ofthe coordinate vector is given by

X z :  - D  t ( j o t ) C ( j t , t l X , ( 1 5 )

It must be noted that the zeros of the determinant of the reduced impedance
matrix give the natural frequencies corresponding to the eigenmodes in which the
selected variables participate. In this case. the so-called'local modes' (deformation
of the appendage without reaction ol the central body) are eliminated. It is
assumed here that all the variables of the init ial coordinate vector are coupled
through Equation (13). so that no singularity arises in the course of the reduction.
the decoupled equations being analysed separately.

When the flexible parts of the system are treated as a continuum. the
deformations are described by distributed coordinates which are the solutions of
partial differential equations. Equations (13)-(15) remain valid. provided the
submatrix symbols are replaced by l inear operators 5 7. The elements of the
resulting impedance matrix are generally transcendental functions of.r. whereas in
the discrete approach they are polynomial fractions in .r. In all cases the reduced
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impedance matrix remains Hermitian, which follows from the partitioning in
Equations (13) and (la). A specific example of this type is worked out in detail in
Reierence 8.

' :  
[ 'o '  ; ]  

o: 
[ , .u,f , ,  , . ,- 'o(/ 'o+r'-r ' ) ]

_,,JK : 
['3 

(/'

Figure I

t40

Examples An asymmetric, spinning rigid body
The principal axis frame is chosen as the reference frame. The corresponding

inertias are 1r. .12 and 1r. If the body spins nominally about the third axis with
nominal spin velocity roo, the Lagrangian formalism provides two coupled
linearised equations in the form of Equation (1) for the small angular
displacements 0r and 0, (Tait-Bryan angles) that characterise the nutational
motion of the body, with

I ' )  o
orN (1.

To each nonzero coefficient in G there corresponds one zero coefficient in M and
K. so that the corresponding impedance matrix H has the property developed
above. in the second section of this paper. Then, introducing the above matrice
into Equation (4).

f U  r -  l , ) ,  ' A  I  r ' ]  j | n n l l  ,  t  l  r -  I  l l
n v t ) ) - l  I

I i u r ' r n ( / ,  + / , - / , )  ( l \ - l t l , , ' o - 1 , ,  1  |

The 2 x 2 transformation matdx

r :  [ '  o  l
[ 0  j )

provides, according to Equation (12).

H - ( , , , )  -  I  
l l ' - l ' l r ' ' l ' - 1 "  t 2  " '  ' o { r r  -  l ' � -  / ' }  

I
L  , ) t t ( r ] , - t l v - t \ )  \ t  , - t , ) , , , i ,  t , , , ]  l

The solution of det H*(ru) :0 gives the two eigenfrequencies

and if 0, and {12 represent the components of one eigenvector associated with the
above mat r ix  I l .  Equat ion  (11)g ives

0 t  :  0 ,  0 t :  j ( 1 ,

Since (./f and 0l are real numbers. 0, is a real number and 0, is a purely imaginary
number. According to Equation (7). the resulting angular displacements (/,(r) and
0r(r) must be in quadrature.

The purpose of this trivial example is to il lustrate the modal-analysis procedure
when advantage is taken of this particular form of the impedance matrix. The
following examples are taken from the literature to show the wide variety of
practical problems that are compatible with the above simplifying conditions.

The Geos sarellir€ (Fig. l)
In Reference 6. the reduced impedance matrix of the Geos satellite is given

explicitly. This spinning system consists of one asymmetric rigid body to which
two 20 m cable booms are attached symmetrically. In the nominal configuration.

')(i ')
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the cables are parallel to the axis of intermediate inertia of the main body. There is
a vertical offset between the centre o[ mass of the main body and the attachment
points of the cables. The matrix is derived on the basis of a continuous approach.
The reference frame is the central axis frame of the compl€te undeformed satellite.
In the reduced matrix, only four variables are coupled- ir, ir. (/, and (./r. which
describe the lateral oscil lations of the central body with respect to the total
system's mass centre and its nutational motion. The general form of this matrix
with the nominal spin set equal to I is as follows:

kt' � + r) (m + l,) 2 j0 \n+ f ] ) -2i, d Il ( ( , ) 2  + t )d  f ,

2j ! ) \n+f t )
[l-k , ) ' �+11 -  a t , q d L 2jo dfl

2ko rt.f , -q diz
( | , ' �  t ) s t - 4 t : f !

i , \ t  t  +  t )  I ! )
2tu (tz .fl

l , ] + t \ d j l 2Jo d.ll
j t ' ) U t +  I 1  t )

+2iD ttz f I - dz k, ' �  + t)f j

where n is the mass of the total system. 1,. 1, and i. are the principal inertias of
the main body. d is the vertical offset between the cable-attachment points and the
rain body's centre of mass. and | ,(utl.. l 'r(,t) and g, (tu) are transcendental functions

-of or which arise from the soluiion of the partial differential equations describing
the cable-boom motions.

This matrix contains only real and purely imaginary coefficients. The
cor respond ing  coord ina te  vec tor  i s  4 : ( i r ,  : r ,  0 t ,02) r .  By  rear rang ing  the  l ines
{and the columns accordingly) such that./ ' :( ir. 0r. :r. (/1)ris the new vector. the
particular matricial structure of Equation (8) is obtained and the transformation of
the second section applies. The impedance matrix associated with the transformed
coordinate vector q* : (r , . (tr..1., ,7 0, ) 

'  is real and symmetric. as shown below:

k  ) ' �+  t ) ln+L) l  ) ' �+ t jd l l - 2 , , t n + t ) h r1I1

l . !  +  t ) d l l
d ' �  kDz I  t )  l l

21, , , t  t l
, , ( I ,  + I ,  -  / r )

+ 2 ,  d z  l 1

2t ,  \ tn + L) 2r t  d l , l t " + l \  4 t z q d l z

2 t t t t l ,
i , ( 1 r + / , - ' 1 r )

+ \ o  t ' �  J , l l  \ q '  a d ' 1 .

The ISPM spacecraft (Fig. 2)
ln Reference 8 the complete derivation of the reduced impedance matrix for the

ISPM spacecraft through the continous approach is given in detail. The spacecraft
modell ing resembles that for the Geos satell i te described in the preceding example.
with two major modifications. First. a long axial antenna is canti levered from the
main body along the spin axis; secondly. there is no vertical offset between the
attachment points of the cable booms and the centre of mass of the system
composed of the central body and the axial antenna. The reference frame is the
central axis frame of the complete undeformed satell i te.

The re-partit ion of real and purely imaginary numbers in the impedance matrix
corresponding to the coordinate vector defined in the previous section is identical
to that of the Geos matrix. although the expressions for the coefficients are more
complicated. Setting d:0 in the latter and adding the impedance matrix of an
axial boom s provides the complete matrix for the satell i te. The influence of that
boom on the central body is reflected in transcendental functions of or. The
considerations for Geos also apply to the treatment of this eigenvalue problem.
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A typical l i terature case (Fig.3)

In Reference 4 the following example is quoted to i l lustrate the solution of the

eigenvalue problem of gyroscopic systems via a first-order formulation. The

system consists o[ a symmetric spinning rigid body (moments of inertia ,4. C. C)

containing two equal i lss€S m12 lying at distances :Ld from the centre ol mass of

the rigid body. At equil ibrium (spin rate r,-,0). the masses are aligned with the spin

axis and each is connected to the rigid body by four identical springs (stiffness ki4)

so that lateral oscil lations may occur. To study the antisymmetric motions of the

two point masses. the following hybrid coordinate vector is chosen. the reference

frame having its third axis along the spin axis:

q  :  (u  t .  u2 .  t t  ,  .  w . .  r , r ,  ,  t ' - , r ) t

where r, and u2 are the components in the reference frame of the displacements of

the masses in the equatorial plane. r.r ', and rrz the components of the

corresponding inertial velocities. and .r, and (')2 are the components of tt

rotation vector of the rigid body; the last four are quasi-coordinates. The followinf

first-order formulation is then obtained:

I a + c q : 0

with

0 0 0 0

0 k 0 0

0 0 0 0

0 0 0

0 0 0 A

0 0 0 0 A '

ESA Journal  1979.  Vol .3142

I



l a -

whcrc ,4' : ,4 + nrrrr is the moment of inertia of the whole system about a rransverse
ax  ls .

Although a second-order form has been assumecl so far for the equations of
motion. so that the dimension of the coordinate vector is kept to a minrmum. tt
can be seen in this particular case of f irst-order formulation that the property
explained in the second section can be retrieved by simple transformation of the
above vcctor.

Introducing the new veclor

\e eigenvalue problem of th; above system. wrth previous notatrons. can be
expressed as

I  r ' t t  +  j c l x ' = 0

where X'is lhe eigenvector corresponding 10 the new vector q'. The above
rmpedance matrix is Hermitian and contains oniv real or purcly imaginary
numbers. By simplv rearranging thc columns (and the corresponding l ines). thc
typ ica l  s t ruc tu re  o f  Equat ion  (8 )  i s  ob ta ined and the  t rans lb rmat ion  o f  Equat ion
(10) appiies. The translbrmed coordinate vcctor q*. which can be expressed in
terms ol the original variables as

t 1 ^ :  l j t t r .  j n . .  j l t r .  u , .  r ' r .  , t t ) '

is associated with a real and symmetric matrix. Note that this transformation is
not unique as several combinations of l ines and columns lead to an equivalent
result. Explicit ly:

When the partit ioning of the impedance matrix cannot be performed as in
Equation (8). which is the case if the matrix contains fully complex numbers (real
and imaginary parts non-zero). a different procedure can be adopted to retrieve a
real and symmetric matrix without doubling the dimension of the original
coordinate vector.

By following the reduction procedure in Equations (13) and (14). it is possible to

ESA Journa l  1979.  Vo l .3
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( c . 1 ) , J , j

, k t)

0

lc  A ' ) t , t r

0 0

0 l c  4  ) , , , 1
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reduce the original n x n impedance matrix to a 2 x 2 Hermitian matrix. Once the

eigenvalue problem has been solved for this reduced system' the complete

eigenvectors of the system can be calculated by matrix-multiplication operations.

as shown in Equation (15). As noted earlier the modes in which the two selected

variables do not participate are eliminated from the solutions of the eigenvalue

problem by this techniqu€. ln this respect. it is advantageous for spacecraft

applications to retain the true coordinates that describe the attitude motions of the

reference frame (fixed in the central body). ln so doing. the general form of the

r e d u c e d 2 x 2 m a t r i x H i s

where a. b. c and d are real functions of the frequency so that the off-diagonal

elements are complex. Matrix H is transformed into matrix H* according to the

scheme of Equations (l l) and (12), where matrix T must be replaced by the

followins matrix S:

J srn /' 
-l

-./ cos l/./ |

where ry' is a parameter. Explicitly.

(16)Ha,,, =1,:jb '*:of

s : [":'y
I srn v/

H ' ( t l  :

a cos2 12 + rl sin2 { +isin z lt

b

-i(f'nr,1, ."osz,/)

/ -  , l  \

l { T  s i n  2 r l t - c c o s A ! l
\ r  /

+ b

4 s ln 'U  + .1  cos-V/  
t  

s ln  zq ,

( 1 7 )

( 1 8 )

One is now free to choose the parameter ry' such as to cancel the imaginary part of

the off-diasonal elements. i.e.

,  I  2 c
V-l : arc tan - ,

2 A A

If this condition is satisfied. the above matrix H* is real and symmetric, so that the

elements 0f and 0l of the corresponding eigenvectors are real. The co'

respondance between the latter and the original variables is given by th-

transformation in Equation (17),

(lr : of cos ry' + j 0f sin ty'
(20)

(/, : {)f sin rlt - j 0! cos rlt

From this equation it is clear that the eigenvectors associated with matrix H in

Equation (16) are complex. so that the phase between their respective components

may take on arbitrary values and depends on the particular mode considered. This

explains why the transformation matrix S in Equation (17) must depend on the

eigenfrequency lthrough the parameter ry' defined in Equation (19).] in order to

provide the new variables {/f and t)j which are in phase. The special case of the

second section o[ this paper is retrieved if /:0. so that the components of every

eigenvector are in quadrature and the transformation is independent of the

eigenfrequency.
The connection between the parameter ly' and the geometry of the system will

now be examined for a specil ic example (Fig.4). We wil l consider again the case of

the Geos satell i te with the followine modifications: the vertical offset d between the

(Le )

144 ESA Journal 1979. Vol. 3



Figure 4

system's centre of mass and the cable booms is zero at equil ibrium and the
attachment points of the latter are rotated by an angle 95 around the spin axis
(axis 3) so that they no longer coincide with the axis of intermediate inertia of the
main body. If d is set to zero in the Geos transfer matrix. the last two equations are
decoupled from the first two. If the reference frame is also rotated by an angle {
about the spin axis, so as to be aligned with the cable booms at equil ibrium, the
following impedance matrix is obtained for the coordinates 0, and 0, which
describe the nutational motion of this reference frame:

U 1 - 1 2  l r , u ' � ) c o s z $

+  (1 : l, t f) sin2 S

- ( o |  1 l  o ,

where .lr. 12. I. are the principal inertias of the main body and g, is a
transcendental function of to which reflects the interaction between the cable
booms and the central body. The above matrix has the form in Equation (16), so
that the corresponding parameter ry'. calculated from Equation l9 is

' - -  / :  - lu," tun ( / r - l , ) s i n 2 {

! r - l r ) c o s 2 $ - 9 ,

On the other hand. the angular position of the principal axis frame of the whole
system with respect to the reference frame is given at equil ibrium by

,  |  ( l  ,  - | , ) s i n 2 Q
a -  a r c t a n -  '

2  ( 1 ,  I ) c o s 2 ( h  I ,

where 1. the inertia of the two cable booms with respect to the spin axis.
Comparing the above formulas, it can be seen that the angle ry' determines the
location (with respect to the reference frame) of the principal axis frame of the
modified system in which the actual inertia of the cable booms has been replaced
by their eflective inertia. The latter is associated with the torque exerted by the
sables on the main body and depends. of course. on the mode considered. The
following special cases are worthy of note: if ry':0 (Geos example) or if /r =/,
(symmetric body). ry':0 so that no transformation is necessary. If a, :01no "u61"
booms). ry': r,4 which means that for a rigid body the reference axes must be
parallel to the principal axes for the impedancc matrix not to contain full complex
numbers (asymmetric. spinning rigid body example).
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j ( 1 , + l r - l r ) o t

( t , -  I  ) ( t - (D,\s l !2 
!

+ j l l , + l r - l r l u t

( 11  l 2  I t  o . r 2 ) s i n2@

+(13 -  l 1 -  I 2  t o l l  cos2  Q
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Conclusion A gyroscopic system of order n has n complex eigenvectors. which in the most
general case contain 2n unknowns the relative amplitudes and phases of their
components. For a wide class of gyroscopic systems. the components of thc
eigenvectors are either in phase or in quadrature. which is immediately visible
from the structure of the Hermitian impedance matrix associated with the
corresponding eigenvalue problem. In this case. this matrix can be transformed
into a real symmetric matrix of the same dimension by a straightforward
transformation which is indep3ndent of the frequency.

In the case where the Hermitian matrix has the most general structure (contains
full complex numbers). a simple transformation can be performed on the reduced
2 x 2 matrix corresponding to a selected set of convenient variables in order to
obtain a 2 x 2 real and symmetric matrix. The complete eigenvectors are obtained
by matrix-multiplication operations on the eigenvectors of the reduced matrix.
The transformation depends implicit ly on the frequency parameter.

The advantages of the approach explained in this paper are that the dimension
of the system is kept to a minimum and that the physical properties of the
modell ing are taken into consideration. which in many practical cases simplif ies
the modal analysis. On the other hand. nonstandard computational problems
arise which need further development. For instance. accurate determination of the
eigenfrequencies, which are obtained by searching for the zeros of a determinant.
may be diff icult when the frequencies are close to each other.

The last step needed to achieve generality in the above-mentioned transfo'
mation is to elaborate an n x n unitary matrix which transforms the n-dimensionF
impedance matrix of the most general gyroscopic systems directly (without prior
reduction) into an r x,t real and symmetric matrix. This transformation wil l be
treated in a subsequent paper.
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