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Abstract

Résumé

The nonlinearity of the Euler equations implies that a spinning satellite may be
despun quite rapidly when subjected to continuous axial thrusting. This
phenomenon and the conditions under which it occurs are discussed here. The
problem has been recognised with a multibody computer program simulating the
complete equations of motion. An approximate expression for average spin
evolution is derived for a spinning spacecraft with two radial wire appendages.
Because of the importance of the phenomenon for such future projects as the
International Solar-Polar Mission (ISPM). an in-flight verification has been made
using the Agency’s Geos-1 scientific satellite. The agreement between the
theoretical predictions and the in-flight data has proved to be excellent.

Pour un satellite en rotation. la non-linéarité des équations d’Euler fait que la
rotation peut &tre freinée rapidement sous linfluence d'une poussée axiale
continue. Ce phénoméne et les conditions de son apparition font 'objet du présent
article. On a procédé & une analyse du probléme au moyen d'un logiciel
permettant de simuler intégralement les équations du mouvement en tenant
compte des attractions exercées par les différents corps célestes en présence. On
obtient une expression approchée de lévolution movenne de ia rotation d’un
satellite équipé de deux appendices constitués par des cébles radiaux. Vu
I'mportance du phénoméne pour certains projets futurs telle que la Mission
internationale d'¢tude des régions polaires du Soletl (ISPM). on a procédé i une
vérification en vol sur le satellite scientifique Geos-1 de 'ESA. Les résultats
obtenus 4 cette occasion sont en excellent accord avec la théorie.
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Introduction

The in-flight experiment

The loss of Explorer-1 in 1958 was the first unpleasant surprise with spin-
stabilised spacecraft, but it was not the last; a number of other examples of
unexpected in-flight behaviour are quoted in Reference 1. The two recurring
problem areas in these examples are the interactions between the control system
and certain flexible clements of the spacecraft (Mariner-10. ATS-V). and neglected
nonlinearities in the dynamical model (Tacsat). Most of these sagas have had
happy endings and have stressed the importance of the art of modelling. This
article describes another example of a nonlinear effect that may cause rapid
despinning and subsequent loss of a spacecraft.

The potential victim was Geos-1. a scientific magnetospheric-explorer satellite
{launched on 20 April 1977). which spins nominally at 10 rpm about its axis of
maximal inertia and carries two 20 m-long radial wire booms or cables. An orbit
manoguvre with continuous axial thrusting was planned for Geos in May 1979, a
stmilar manoeuvre having already been executed on 26 April 1977, shortly after
apogee-boost-motor firing (booms in stowed configuration). This first manoeuvre
lasted three minutes and was nominal in the sense that only a spin down from 96
to 95rpm was noted. As the new orbit manoeuvre was to take place with the
booms fully deployed. there was some concern about their behaviour.

From inspection of the linearised equations of motion one would only conclude
that the manoeuvre is safe. As a systematic check, however. a computer simulation
based on the full (nonlinear} equations of motion in a multibody formulation ? was
performed. The results predicted complete despin and subsequent loss of the
satellite due to slackness in the wire cables in just a few minutes®. Intensive
program checking confirmed the consistency of the results. At the same time. a
closer look at the full Euler equations for a rigid body indicated the possibility of a
similar type of behaviour,

With this level of understanding of the phenomenon it was decided to execute
the planned orbit manoeuvre using a radial thruster in pulsed mode instead of an
axial thruster in continuous moede. This changed the manoeuvre duration from
45 min to 9 h. According to Reference 2. the spin variations associated with this
type of thrusting are negligible.

An in-flight verification of these predictions was later proposed by the dynamics
group in view of the potential importance of the phenomenon. The ISPM project
group supporied this verification, because a similar situation could occur during
an ISPM spacecraft mid-course correction manoeuvre if one of the axial thrusters
were 1o fail.

The verificatien munoeuvre was conducted in fwo segments from the Agency’s
European Space Operations Centre (ESOC) in Darmstadt (Germany), on the 27
and 28 September 1979+,

A direct comparison between the outputs of the Geos satellite’s on-board
accelerometers and the theoretical predictions is presented in this paper. The
correlation between telemetry data and simulation is convincing. especially for the
variations in spin rate,

The nonlinear effects discussed here are little known and not explicitly discussed
in the literature, although the phenomenon of interest is a special case of the self-
excited rigid body *°. The crucial point is the thruster location with respect to the
principal axcs of inertia of the satellite. The underlying theory for a rigid body and
the extension to a central body with two cable booms appended is provided in the
last section. An approximate expression is derived to calculate the time to
complete despin. The results show that the destabilisation time is inversely
proportional to the third power of the initial spin rate. In this respect. the success
of the first orbitai manoeuvre conducted with Geos's booms stowed was due 1o the
very high spin at that stage of the mission, rather than to the fact that the cable
booms had yet 1o be deployed.

System modelling
Despite the many flexible booms and antennas that surround the main body of
the Geos satellite (Fig. 1), the overall dynamic response of the system can be
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simulated satisfactorily by a simple model including one rigid body and two
hinged bars to represent the 20 m cable booms, the remaining appendages being
considered as rigid. The bars are assigned the same mass and inertia characteristics
as the corresponding flexible elements. Detailed analysis shows in fact that the
deformation modes for which the cables depart substantially from a straight line
can be ignored. The connections between the central body and the cable booms
are represented by two-degree-of-freedom joints, so that the resulting relative
motions can be broken down into oscillations in one plane perpendicular to the
spin axis (equatorial plane). and another containing that axis (meridian plane). No
damping is represented, although Geos is equipped with a particularly effective
nutation damper and root dampers for the cable booms. This omission has no
major consequences as far as the dynamical phenomenon of interest is concerned.
namely the spin variations associated with the action of an axial external force on
the satellite.

The pre-flight simulation of the planned test manoeuvre was made with a
generic. discrete-coordinate simulation program. This digital computer program
has the capacity to simulate the large-angle motion {(nonlinear equations) response
of interconnected rigid-body systems to external forces. with possible constraints
for the interbody connections. The program s currently being used for preliminary
studies of the attitude dynamics and appendage-deployment phases of spacecraft
with flexible appendages. Such investigations may have a considerable impact on
manoeuvre strategies {the subject of this paper being a dramatic example}.
mechanical design and control-system definition.

Pre-flight simulations
We shall now analyse qualitatively the dynamic behaviour of Geos as predicted
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Table 1. Input data in reference frame {Fig. 2)

Main body
Mass (kg} : 273.68 (including
4 kg of fuel)
Height of CG above

separation plane (m) : 0.502

I[nertias along X.
Y. Z (kgm?) 0 78.37.163.51. 170,98
Cable booms

Root location{m) : (0. +1.101. —0.1797)
Specific mass (kg m) : 0.0224

Length (m} 1 1975

Tip mass (kg} 1 0.1072

Lower axial thruster

Location (m) © {0.555.0.466. —0.394)

Direction {00 1)
Level (N) 1 7
Mode 1 continuous

Inclined accelerometer
Lecation (m) 1 {—0.6925.0.0.2763)
Sensitive direction  : (0.0.7071. —0.707t)

Yertical accelerometer
Location (m) 2 (0. —0.6925.0.3731)
Sensitive direction - (0.0, 1)

Figure 2

268

520,00

480,00

L

440,00

4upo. oo

L

360, 00

GNITUDE OF ANGULAR MOMENTUM

.00

MA
320

280,00

oo ub. 00 80,00 120,00 160.00 200,00 240,00 280,00  320.00 350,00 400,00
=GEDS DEOB=TIME (SEC)

Figure 3

14,00

12,00

10,00

£,00

B.00

OMEGR VECTOR W3 (RPM)

4,0

)
1
'
1
|
1
1
]
|
i
'
1
)
b
'
|
|
|
{
i
i
1
)
1
I
I
I
i
1
]
]
i
1

09

2,

T T T T T T T —
.0g i20.00 160,00 200,00 240,00 280,00 320,00 350,00 400,00

#GEDS DEO8=TIME (SEC)

00 40,00 8t

Figure 4

by computer simulation when the lower axial thruster is operated in continuous
mode. The basis of the mathematical model is shown in Figure 2. The satellite’s
mass and configuration at the time of the dynamic experiment are summarised in
Table 1. the frame of reference being centred on the main body’s centre of mass,
with the orientation indicated in Figure 2.

Let us concentrate first on the variations in the system's total angular
momentum. The axial force fixed in the main body generates a spinning torque
which is perpendicular to the angular momentum when the excitation starts. As
one may anticipate intuitively, a unit vector aligned with the angular-momentum
vector will describe a cone in inertial space. at spin frequency. In the present case
the corresponding cone half-angle remains smaller than 1°. Of more interest is the
time history of the magnitude of the angular momentum. which undergoes a
systematic deviation from its nominal value, as illustrated in Figure 3. If the action
of the external torque is stopped at some particular instant. the angular
momentum will remain constant and the satellite will reacquire its equilibrium
configuration after the system oscillations have damped out. The resulting spin
rate is then easily calculated as the ratio between the magnitude of the angular
momentum and the spin inertia of the system. From this we can conclude that the
satellite’s instantaneous mean spin rate must vary in much the same way; this is
confirmed in Figure 4. where the third component of the omega vector is plotted as
a function of time.
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It is worth noting that such dynamic behaviour is not predictable on the basis of
linearised equations of motion. Linear analysis shows. on the contrary, that the
spin rate should be constant during such excitation’. The despin phenomenon
must, therefore. be attributed to nonlinear effects. This is deduced on an analytical
basis in the next section. A sound understanding of the problem can. however. be
gained by considering the spacecraflt motions. as explained below.

When the continuous axial force is applied. the body-fixed Z-axis (Fig. 2) begins
to wander about the angular momentum vector. The nutation angle (measured
between these two directions) is plotted against time in Figure 5. The resulting
oscillations are at the nutation frequency for this type of excitation. whereas twice
this frequency is always associated with the nutation-angle variation when the
motion is force-free. The nutation frequency is a characteristic frequency of the
system and is identified from modal-analysis considerations.

The motion of the centre body in inertial space can be visualised by examining
the trace of the body-fixed Z-axis on a plane fixed in inertial space. This 1s shown
in Figure 6, where the plane of reference is perpendicular to the body Z-axis when
the manoeuvre is initiated.

From the comments above it is clear that the body-fixed torque vector
corresponding to the applied force and the angular-momentum vector do not
remain perpendicular to each other, due to nutation. The work produced by this
continuous torque therefore varies periodically at the nutation frequency. From
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this it can easily be conceived that the mean value of this function over a nutation
period does not necessarily average to zero. but rather depends on geometric
characteristics of the system. The conditions that govern the variations in the
angular momentum are established in the final section of this paper.

It should be clear from the preceding arguments that the spin variations are
forced at nutation frequency (Fig. 4). The cable booms are in turn forced into
antisymmetric oscillations in the equatorial plane at the same frequency. The
relative angular displacements of one cable in the equatorial plane with respect to
the centre body is shown in Figure 7. As outlined previously. this is a nonlinear
response to the type of perturbation under consideration. since the eigenfrequency
of the system which characterises this type of cable boom motion is basically
different for this length of cables.

Turning our attention now to the oscillations of the cables in the meridian
plane. we can see by simple examination that the traces of Figures 5 and 8§ are
similar but of opposite sign. This is typical of the so-called *nutation mode’ of this
mechanical system. which can be identified {rom linear equations”. The cables
experience antisymmetric displacements for this mode. which is always coupled
with a higher frequency but otherwise similar mode. the so-called ‘meridian
antisymmetric mode’. This high-frequency vibration is clearly present in Figures 5
and &,

Another characteristic of Figures 4. 5. 7 and 8 is the modulation in amplitude of
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the corresponding signals. The periods of modulation can be obtained by
introducing the spin-rate variations at nutation frequency into the linearised
equations of motion, This changes the linear equations with constant coefficients
into lingar equations with periodic coefficients. The observed modulations can
then be explained in terms of parametric excitations.

To summarise. the general dynamic behaviour of Geos under continuous axial
thrusting conditions is governed essentially by the nonlinear part of the equations
of motion. although some system modes typical of lincar response are also present,
The long-term effect of the resulting torque is a despinning of the spacecraft and a
consecutive build-up of nutational motion. as illustrated in Figure 5. the cable
booms making wild oscillations at the same time (Figs. 7 & 8). It should be noted
that the cables themselves could become slack long before that moment.

Determination of manoeuvre parameters

To establish the validity of the theoretical predictions that led to the changing of
the strategy for the orbital manoeuvre planned for May 1979, it was desirable to
devise the experiment manoeuvre so as to produce a significant spin-rate
reduction. thereby causing a sensible increase in the nutational motion. This
requitement had to be compatible with the many system and operational
constraints™; there are stringent conditions on the minimum spin rate (7.5 rpm) to
ensure proper functioning of the attirude-measurement system. and on the

ESA Journal 1979, Vol. 3
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maximum nutation angle (15°) to maintain a good-guality radio link with the
ground stations.

In view of the above, and taking into account the fact that some of the system
parameters. such as thrust level and residual fuel were not accurately known.,
extensive computer-simulation runs were made to cover a wide range of system
parameters. As indicated in Reference 3, the optimal strategy turned out to be a
3min manoeuvre with an initial spin rate of 11 rpm. This would allow the
predictions to be confirmed with reasonable margins with respect to the system
constraints.

Monitoring of the manoeuvre

The dynamic behaviour of the Geos satellite is monitored mainly by the pair of
on-board accelerometers, the exact locations of which are given in Table 1. their
sensing directions being parallel (vertical accelerometer) and inclined by 45°
(inclined accelerometer) to the body-fixed Z-axis. The corresponding telemetry
output is plotted in real time on strip-chart recorders in the Control Room at
{ESOC). This provides immediate insight into spacecraft behaviour and, at the
same time. a valuable base for real-time decision making during a manoeuvre, The
computer-simulated accelerometer traces corresponding to Figures 3-8 are repro-
duced in Figures 9 and 10.

Spin rate is measured via the satellite’s optical sensor system, which is designed
to provide only one type of measurement every 45s. In this respect it was not
possible to assess the mean spin rate until well after the manoeuvre had been
completed; neither was it possible to monitor the constantly changing attitude of
the spacecraft during the manoeuvre with the set of solar and earth sensors.

Comparison of predictions and telemetry data

Since the experiment was somewhat critical in terms of spacecraft security, it
was decided to make a prelimmary excitation manoguvre lasting 80s, to check
proper functioning of the subsystems and to evaluate the correspondence between
predictions and flight behaviour. This first manoeuvre segment was followed by
the 3 min experiment the next day. The satellite’s spin rate was adjusted to the
requisite value before each manoeuvre by tangential thrusting.

Tabile 2 compares the spin variations obtained by computer simulation and
those measured on-board the satellite; the excellent agreement is readily apparent.
The corresponding points are indicated in Figure 4.

Table 2
Final spia (rprm:)
Manoceuvre [nitizl
duration (s} spin (rpm) predicted measured
82 10.97 10.36 10.36
181 11.00 .55 Y.53

Teiemetry data were used to produce the plots of Figures!i and 12
corresponding to the first and second manoeuvres. A direct comparison is shown
with the computer-simulated outputs. which had been scaled to the format of the
strip-chart recorders. The accelerations are measured in milli-g’s as a function of
time in seconds. The saturation level al +12.5mg has been included in the
predictions.

The acceleration at any point in the main body depends on all of the system
parameters. Any deficiency in the system modelling may therefore affect the
resemblance between the simulated and actual time histories of these accelerations.
Nevertheless, Figures 11 and 12 show good agreement between predictions and
rcal-time telemetry data for the on-board accelerometer outputs.

The differences in magnitude which can be observed are attributed to damping.
which was not incorporated in the mathematical modelling. In this respect, the

ESA Journal 1979, Vol. 3
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Averaged spin evolution via
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linearised equations

amplitude modulation of these signats is much less pronounced for the actual data.
although 1t is still quite visible. The predictions show a shift in the phase of the
accelerometer signaids as a result of the narrowing assoctated with the amplitude
modulation. This phenomenor is not reproduced in the actual accelerometer
outputs. As a direct consequence. the amplitudes of uccelerations corresponding to
the consecutive free motions are different. This is particulariy apparent for the
second manocuvre,

A rigid body spinning uniformly around ils major axis of inertia is subjected to
continuous axlal thrusting from time 1, onwards. The equivalent force. antiparallel
to the absolute exhaust velocity. is considered as axial. The thruster is not located
on the spin axis. so that & body-fixed constant equatorial torque is applied to the
spinner. The mass variation due to fuel consumption is negiected.

This problem is a special case of the self-excited rigid body as defined in
Reference 6 {pp. 145-153} und References 8 and 9. A complete analytical solution is
not available although the self-excited rigid body is the simplest generalisation
possible from the force-tree case. as the right-hand sides of the Euler equations are
arbitrary constants instead of zeros. The “self-excited rigid body’ represents a
problem of considerable practical interest. as it also describes flat-spin recovery
procedures *°.

Under the assumptions mentioned. one would intuitively expect the effect of the
equatorial torque on the encrgy and angular momentum to average out over one
revolution. and that consequently these quantities cannot change significantly. It
will be shown here that this expectation is not always confirmed.

Rigid body
The Euler equations tor the probilem considered are:

Adcip + ([C—B)e, oy =1
Boy, +{A-Cloym =1, (1)

Cery + (B=A)oy,m, =0
A<B<C

The initial conditions are:
{0} = e55(0) = 0 (0} =2 >0

Linearising about the initial conditions changes Equation (1) into

Ay 4+ (C-B)Qwm, =

By, - (C-A)Qm =1, (2)
iy = €
The solution of Equation {2} will be discussed in some detail to establish for how

long it is valid and what type of evolution takes place. This solution is easily
obtained as

oo ) I
' = - - sinQONt — -~ - cos ON
er(t) AQ;-’qm t (C—A)Q(l cos QNI)

f, . f
e1,(t) = BQ.N sin QONt + (C? B)b (1 — cos QNT) (3
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with N = (C -ANC—B)
AB

To examine the displacement of the rotation vector ¢ in the body. we write

Equation (3} as

A
oy -y = - " cos 1QNT - )i
Q. {C-A)A
()
A
e - 5, = " sin (N1 - @)
i T (C-BiB
where
~ 1, ! c
,_;1 = - E " = . ! {f)]
(C-A)Q - {(C - ByQ
B A [, C-A B
4.2 = I ¥ = b : ¢
m (\_B 1 (-, ’A 2 ”]tp] r: \/(‘—B A (")

Equation (4] is the parametric equation of ellipses. such as are given in Figure i3,
These trajectories have the following notable properties:

The centre M has coordinates [,. i, ): its direction 1s independent of €.
The principal axes of the ellipses are always parallet to the principal axes of the
rigid body. The semi-major axis is parallel 1o the intermediate axis of inertin
and the semi-minor axis to the minimal axis for any value of the applied
torque T, . 1)
The eccentricity of these ellipses is independent of the applied torque and the
spin rate; it is a tunction of the inertias only.

2y (C-B)B  (B-A){A+B-()

=0 =

= - = : (7)
(C-A)A ALC - A)

The nutation frequency QN defines the uniform time cvolution ol the
eccentric anomaly. This Lype ol time dependency implics that the two equal
parts of the cllipse obtained by the division by an arbitrary diameter are
completed in hall’ a period.
The velocily v of the rotation vector o) varies between

I C-B A4, fC-A A4
/ . < v
VBCA) A

m

h \r"/\ (C-B) B

The maximum is reached al the crossing of the semi-major axes.

The maximal deviation of the rotation vector from its initial direction oceurs
at the points D (Fig. 131 As this direction does not pass through the centre M.
the evolution of this duration from D 10 O cannot be the symmetric part of
that from O 10 D,

From the scalar product < M. T = one cun distinguish the fotlowing cases for
the angle between these two directions:

i L1, B A
<M. T> = - .
Q {(C ANC B

(8)

Loty > 0o angle M. T <

Loty <O —angle M. T > "
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Figure 13
The 3. v, axes are nligned with the two
equatorial principal axes:
t,: parallel to the principal axis of minimal
inertia
t1,: parallel to the principal axis of
intermediate inertia
During the ficst nutation period, the ellipse (a} with
cenire M is described. During the second nutation
period. the cllipse {b) with centre M | is deseribed.

276

This last property is important when discussing the evolution of the energy
and h. which is half of the square of the module of the angular momentum,
The rate of change of these quantities is easily obtained from Equation (1):

Id . )
&= 33 (Al + Bes + Cod) = b, + o0y b, 9
f— 1 d 2 2 2 .2 2 .2
h = E&r(A o7 + Bios + Comy) = Awgt, + By, (10}

¢ and h are simply the scalar products of the applied torque with the o and h
vectors, respectively.

The ellipses of Figure 13 are divided into two unequal parts by the perpendicular
to T One part defines the zone where the energy is increased
é= <. T > >0 whereas the other part corresponds to a reduction in the energy.
As more time Is spent in the zone that contains the centre one can expect a
resultant net increase or decrease in the energy depending on the position of M.
These considerations are valid as long as the «» trajectory can be used as a
reference or as long as the change in energy per revolution is small (period
T=2m.QN). The averaged changes in ¢ and # are then approximated by

(11)

(12)

Substituting Equations (3). (9) and (10) in Equations (11} and (12). only the
constant terms will remain and

v = hit, B:ﬁ ,,,,, (13)
Q (C-A)(C—B) :

= t, B-

holile B A (14)

Q  {C-A)C-B)
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These two cquations provide the following information:

If t; or t,=0 or B=A (symmetric body}. ¢ and / remain constant on the
average, No secular effects on spin rate are present and Equation (3) always
represents a good approximation to the exact solution, which can be found in
Reference 6.

If ¢, and r,=0. the averaged energy ¢ and averaged K increase or decrease
according to the sign of t 7, . but in such a way that

Cé — h = Cé, — h, {15}
remains constant. where

. 1 (Al B i
Céy ~ hy =54 - =+ .17 16
0 il Q{Z) lC—A C_B 1[ (16)
As long as most of the kinetic energy is carried by the initial axis of rotation.
we can approximate ¢ = CO7. and substituting this result in Equation (13) we
obtain

) 1.1, B-A
OONC = 12 17
Q (C—-A}(C-B) ()
where Q is the averaged change in «,. Equation{17) is easily integrated by
separation of variables:

3.t B-A
Q- =L f—t 18
(] C (C*A)((‘*B}( ()) { )
or
Ofr) = Q, \*ﬁ L) 19)
T
with

T A)(C -
P o S CTANCTB) o (20)
3,1, B—-A

Another derivation of Equation (19) relies on use of the third Euler equation of
Equation(1). where for the product o, the mean value obtained from
Equation (3) is used. The mean value happens te be the product & - @, The result
is identical to Equation (17). but the underlying assumptions are not so explicit.
This approach will be employed for the extension to the rigid body with cables.

Returning to Equations (19) and (20) we can observe the following:

r,-t,>0 implies that >0 and that Q. ¢ and h increase. The average spin
increases. but slower and slower as time goes on. The time needed to double
the initial spin rate is 7 7. The assumptions under which Equations (17} and
(19) are derived remain satisfied. The limiting motion is a pure spin of infinite
magnitude about the initital spin axis. This type of motion is also an
equilibrium solution of Eguation (1). Such motion is not possible for a finite
value of (.

t,t,<0 implies t<0 and Q. ¢ and h decrease. While Q decreases. the
instantaneous mid-point of the ellipse moves away from the origin. and the
nutational motion increases. When £ approaches zero. the assumptions under
which Equation (19) is derived become invalid. However, due to the one-third
power law {compare with Fig. 4), Q hardly changes at the beginning and then
decreases to zero rather abruptly. Due to this fact. the predicted time 1 to
reach zero spin for the average ) is better than one might expect a priori.
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Finally. one can note that a reversal of the thrust direction does not affect the
conclusions for spin-up or spin-down (assunming Q,>0) as the sign of 1,1, iy
conserved under such a transformation. This feature was confirmed by the
simulations.

Rigid body appended symmetrically with two cable booms

The simulation results {(Fig. 4) indicated that the structure of Equation (19) was
conserved when the rigid body was appended with two symmetrically attached
wires. on the intermediate principal axis and in the vicinity of the centre of mass of
the central body. However. the destabilisation times obtained hy using the central-
body inertius in Equation (20) were much too shorl. whereas those obtained by
using the rigidified total system inertias were much too long. Therefore. the
linearised Euler equations for the svstem considered were taken from Relerence 7.
The e\, s, equations are coupled with the meridian antisymmetric oscillations
{1 This set of three equations (21} is the equivalent of the first two of Equations
(2). With the Laptace variable 5. it becomes

As (C--B)Q —2md a+1 6 o2, (s} s
—C-AQ Bs 0 e8| = 58 (21)
§* s
5 0 . haas) 0
1+
where
d = distance of the attachment point from the spin axis
i = equivalent length of the cable booms
m, = equivalent tip-mass
i = dl
A.B.C = central body inertias. as before.

The determinant of the matrix of’ Equation (21) gives the meridian-antisymmetric
and nutation frequency. The solutions o) (s} ¢1,(s). i, ,(s) of Equation{21) are the
Laplace-translormed time responses to continuous axial thrusting with zero initial
conditions. We are only interested in the constant term of this solution. This is
given by the residue corresponding 1o the pole s=0. After some elementary

calculations,
71‘_}
T o= = 22
0y Q(C—A) (22)
Gy= (23)
- QU -8R}

where B = B—2m, alu+)

Equations (22) and (23) are identical Lo (4) and (5). except for the change from B
to B

The equivalents of the third Euler equation arc the two coupled equations for
e, and the equatorial-antisymmetric oscillations v, |, :

Cog=-2m (420 aly,, 24
W QP = (143 1y (25)
As these equations will only be used Tor the average evolution of ¢, we neglect the

superimposed  oscillations of wr, . This is done by climinating ., between
Equations (24) and (25) ufter putting v, ;2 0. The result is
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y [C+2mfa+ 1P~ (B-A), -0, =0 (26)

where the dominant nonlinear term has been added. The coefficient C" of «, is the
1otal system inertia around the initial spin axis. Substitution of Equations (22) and
(23)in {26 gives the equivalent of Equation (17):

[0y (B - A)

Q00 = —_
Qo C{C—-ANC-B)

(27)

Integration of Equation (27) gives the same result as (19) and the new expression
for the destabilisation time 13

¢ (C-ANC -8B
ca OO ANE B (28)
3t {(B-A)
The structure of Equation (28} is identical to that of Equation (20). but it contains
a mixture of central-body inertias. system inertias and cable parameters.

Comparison of average spin-rate variations

The tollowing data. extracted from Table 1. are used in Equations (28) and {19)
to calculate the destabilisation times and final spin rates for the manoeuvres
mentioned in the previous section:

A4 = 78.37 (kgm?) B = 16351 (kgm?) ¢ = 17098 kgm-
f, = 3.26215{Nm) t, = —3.8877(Nm) / 13412 (m)
a = lL1lm m, = 0.560 kg

B = 145631 (kgm?) ' = 406.86

The equivalent fength 7 is obtained by identifving the inertia about the Z-axis of
the cable booms under mass conservation.

Table 3
Manocuvre Initial Final spin Destabilisation Final spin predic-
duration spin measured time from [28) tions from {19)
{s) {rpm) {rpm) (s} {rpm)
%2 10.97 10.36 447 = 12T 1025
181 11.00 9.53 451 = 7317 4.7

Table 3 gives the destabilisation time 7 for the two manoeuvres and the results
for the spin rate. The order of magnitude of the latter is correct. The difference 1s
probably caused by the fact that onty one nonlinear term is used to construct
Equation {26). As shown in Reference 11. a whole series of second-order terms
comes in when the equations are developed to second order. and at the same time
the vertical offset between the attachment points and the centre of mass is
considered.

By inverting Equation (19) one can calculate a destabilisation time 7, from the
observed spin rates Q. and the manoeuvre duratton

min

!
man 3
rm ((11 Q“)A _ l (—9)

We obtain 1, =839.93" and t,=837.56". The consistency of these results
validates the structure of the expression used.
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Conclusions
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