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Abstract

Résume

The differential equations describing the static deflections of a Bernouilli beam
under gravity and a concentrated tip load are derived and solved. The solutions
are used to predict tip deflections as a function of bending stiffness for a constant
tip load. This relationship is then applied to the results of the static bending tests
performed on the ISPM satellite’s axial antenna to determine its bending stiffness.
The results show clearly the importance of modelling gravity as a distributed load.
even for light structural elements.

Cet article établit et résout les équations différentielles auxquelles obéit la flexion
statique produite par l'action de la pesanteur sur une poutre conforme i la loi de
Bernouilli avec charge concentrée aux extrémités.

A partir des solutions trouvées, on calcule les flexions d’extrémité en fonction de
la rigidité a la flexion pour une charge en bout constante. On applique ensuite la
relation aux résultats des essais de flexion statique effectués sur I'antenne axiale de
la sonde ISPM enfin de déterminer sa rigidité a la flexion. Les résultats montrent
clairement limportance d’une modélisation de la pesanteur en tant que charge
répartie, méme pour les éléments de structure de faible poids.
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Introduction

Bending equations
for slender beams

The increasing size and flexibility of appendages on modern spacecraft
introduces a particular problem when these elements are tested under normal
gravity. In spite of their small mass, the dimensions of these appendages are often
such that the distributed load due to gravity cannot be neglected in full-scale tests.
The equations used to interpret the measurements of such a full-scale test must
include this effect.

A simple. but typical example is the axial antenna to be flown on the Agency’s
International Solar-Polar Mission (ISPM) satellite. This newly developed antenna
{by Sener) s up to 8 m long and has a mass of 272 g. It is stowed on a drum
during taunch in an ¢lastically pre-stressed state. and it is then flat in cross-section.
Following deployment, it assumes a double symmetric shape due to the
prestressing and the two ensuing principal bending directions have different
stiffnesses. It is a requirement that the minimum bending stiffness should exceed
16 Nm?.

A first measurement of bending stiffness was performed with the antenna
floating on water, thus compensating for gravity effects. The bending stiffness
could then be obtained directly from the lateral deflections due to a tip load.
However, due to the nature of the floatation devices, it was possible to perform
these tests only for the two principal bending directions. Furthermore. the
floatation devices lended to remove any natural pretwisting of the beam about its
axis.

To verify the earlier results and measure the deflections for different bendn,
directions, it was decided to measure the tip deflections with the antenna hanging
vertically, clamped at the top (deployment unit) and free at its lower end. where a
horizontal force was applied and the deformation measured.

The aim of this paper is to derive and solve the equations describing the
behaviour of such a beam. Assuming small deflections, these equations become
linear. with variable coefficients of the polynomial type, and a complete set of base
solutions can be generated from the corresponding recurrence relation. The
predictions for the deflections based on this model are in agreement with the
results of the previous tests. Other approaches. in which the distributed load due
to gravity is repiaced by an “equivalent’ concentrated load at the tip. produce
results that are in error by an order of magnitude.

A set of general vectorial equations describing the bending deflections of
Bernouilli beams are first considered and used as the common starting point for
problem analysis. These general equations are derived under all the well-kno- »
assumptions that define the slender Bernouilli beam'?. In particular. inmer
moments and forces are defined which average the stresses over a cross-section.
The rotational inertia of a cross-section is neglected. as well as the shear
deformation. and the beam is considered inextensible. These assumptions are valid
for the problem considered here. The general equations allow the treatment of
static and dynamic three-dimensional deflections which are geometrically non-
linear (they are discussed in more detail in Reference 3). They are applied to the
following cases:

(i) A straight beam hanging under gravity. clamped at its root and subjected to
a horizontal concentrated tip load along  principal bending direction.

(1)  The same as (i), with an arbitrary direction for the concentrated load.

(11} Vibrations of (1) in the absence of the concentrated load.

General equations

The first equation is Newton’s second law of motion applied to a beam element
ds under the influence of the inner force and moment - F(s). - - M(s) acting on the
cross-section at s, the inner force and moment F(s +ds). M(s+ds) acting on the
cross-section at s+ds and the resultants F_. M of the remaining applied forces
{concentrated or distributed};
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In slender-beam theory. F(s.t). M{s.t) summarise the stresses in the cross-sections.
They are called the inner force and couple and are part of the response of the
system to F,. M, They appear. accordingly. in the left-hand side of Equation 1.
The inertia term contains the linear density . the position vector R{s.t) from an
inertial origin to the material point at s of the centre line. and d/dt. the rate of
change as seen from inertial space.

Taking moments about the point s+ ds. while neglecting the rotary inertia of the
beam element ds, we obtain the second equation

MR r_m, 2)
ds ds

The cross product in the unknowns R and F makes Equation 2 nonlinear.
Equations 1 and 2 are also given in Reference 2. They are better known in more
specialised forms (no vector equations) that describe planar deformations.

The next equation is an expression of Hookes’ law and relates the inner moment
M to the curvature x via the elastic properties of the cross-section:

A= TST (x -~ 1) (3)
where x, is the natural curvature corresponding to a stress-free state. S is the
matrix representation of a second-order symmetric tensor which summarises the
elastic properties of the cross section in the so-called ‘Principal Flexural-Torsional
axis system ('PFT system)'. where it takes a diagonal form for a double symmetric
cross-section. The PFT system at s carries a unit vector tangent to the centre line
in the increasing sense of s. and two unit vectors perpendicular to the centre line
and along the principal bending directions:

EFEJ,, 0 0
S=| 0 EI, 0 4)
0 0 GA J

where EJ . El are principal bending stiffnesses. and G A is the torsional stiffness.

T is a rotation matrix between the PFT system and a chosen reference frame.
e matrix expression TS T represents the elastic tensor in the (arbitrarily)
chosen reference frame. The physical content of Equation 3 is base-independent.
which is reflected by the vectors M. x, », and the matrix notation T § T 7 for the
second-order tensor.

The assumptions of inextensibility of the beam and the neglecting of the shear
deformations climinate a second equation of the same type between the inner
forces and longitudinal deformations®, In the terminology of Reference 4.
Equatiens | and 2 are balance equations and Equation 3 is a constitutive equation.

The three equations presented so far are equivalent to 9 scalar equations and
contain the 12 unknowns from the components of F, R. M. & (derivatives do not
introduce new unknowns) and the three unknowns defining T when T is an s-
dependent matrix. The three unknowns of T are equivalent to the three
components of a rotation vector {

0=0i,=[00,0,]" (5)

where () is the magnitude of the rotation and 1,a unit vector on the rotation axis.
The general nonlinear relation between the curvature » and this rotation vector

is?:
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Figure 1. Equilibriom of a beam element.
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Figure 2. Axis svstem for beam deflections
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I\'=Eg-1u+51ﬂ0ds(lu)+25“125[1”de(lll)} (6)

Note that Equation 6 reduces to

L
Il
=i

{7

e

when 0 has a constant direction [{d/ds) (I} = 0] or when @ is small and second-
order terms are neglected. Only this form will be used in this paper.

We now have 12 equations for 15 unknowns and the last vector equation
{essentially contained in Ref. 1 in component form) is

| o

R=TI1 (8)

o

5

which gives the expression for the tangent to the centre line in the chosen reference
frame. dR/ds (containing the unknowns of R) as the transformation via T
(unknowns (1) of T = [001]" (PFT system).

Equations 1. 2, 3, 7 and 8 constitute the complete set of general equations. For
the static deflections of a naturally straight, flexible beam. hanging under gravity
and subjected to a concentrated load at the tip, Equations 1-3 become:

- =g 1. 9
as }(g - ( )
oM R . '

e e — % =0 10
&s Cs (19)

M=TST"k (11)

where g is the gravitational acceleration and 1. the unit vector along the
gravitational acceleration.

It should be noted that the tip force F , is used as a boundary condition in the
equations of motion.

The same dextral reference frame will be used for all the cuses mentioned at the
beginning of this section. The root of the beam is the origin and the beam is
clamped at this point (Fig.2). The =-axis is vertical and oriented downwards. The -
and y-axes are horizontal and contain the principal bending directions of *" =
cross-section at the root. —

Planar static deflections
We consider first the case when the applied load is horizontal and parallel to the
y-axis. The deflections will be in the z.y-plane but. at this level. they are not

restricted to small deflections. We denote the components of the vectors in the
Oxyz frame as foliows:

Fisy =[F,F.F]" Ms)=[M M M]" »=[rx.nnr]"

F(.=[001“3]T D(S):[”loo] FI:[OFTO]T

The matrix T is. in this case. a single axis rotation about the fixed x-direction:

1 0 0
T=1|0 cos () --sin {, (12)
0 sin ¢, cos i},
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Equation 9 leads to:

-F=0 --F. =0 -F =4 [( )'_d_(dg_)}

which are trivial. The constants of integration [ollow from the boundary condition
at the tip. We obtain, after integration.

F(s)=0 F(s)=F, Fis)=pg(l--5) (13)

In Equation 10 we use the expression for dR/ds that takes the compatibility
Equation 8 into account:

dx
ds ! 0 0 0 0
dR dy _ ) .
s g | = T =10 cos (), --sin (i, 0 = {--sin{
dc . .
d 0 sin t, cos il 1 cos i
5
L B 4L L .

. dR .
Trm which 4= [0 —-sind, cos?]’

The components of Equation 10 are calculated as
M +sint, pg(l - s) +Fpcost)) =0 M, =0 M. =0 C{14)
and give a nontrivial equation only for the M_component. as expected. As «

contains also only one nonzero component {from Equation 7). x, =#,, we need
Equation 1t only for the relation between M _and (/:

M, } 0 0 El 1 0
0 = | {) cos f) --sin f), El, 0 cos i)
0 0] sin {/, cos (), GA| |0 --sin i,
Weatfind, as expected.
\—/
M = +EI_( (15)

Combining Equations 15 and 14, we have the differential equation for the elastica:

. Fy
(t -~ s)sin0, -- E-; costll, =0 (16)

X

. by
o —
EI,

0,00) =i () =0

Equation 16 defines a nonlinear. two-point. boundary-value problem. When
gravity is neglected (ny=0) Equation 16 reduces to well-known differential
equation for the elastica of a flexible beam and is solved in terms of elliptic
functions'.

The deflections i{s). z(s) follow from a further integration of the solution of
Equation 16:

yis) = J sin ), () do =(s) = jCOS f, (C}do

0 0
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If we now assume () to be small. Equation 16 becomes a linear differential
equation with variable coefficients of the polynomial type and a right-hand side

F
o — g—(i )0 =+ (17)

The solution of the homogeneous part of this equation can be expressed in terms
of the Bessel functions J, ;and J | ;. or Airy functions®.

If we linearise also the expression for the curvature k= --(d*y)/dz?. we obtain
the lollowing third-order differential equation for the deflection:

d*y g

dy F
=R TRURE PR o)

T (18

)
The derivative of Equation 18 gives the fourth-order differential equation that
would have been obtained with more traditional methods:

d*y  ug

d’y  pg dy
&t e e TR T

R TN (#9)

Before discussing the solution of Equations 17 and 18. the differential equations

corresponding to some other cases will be derived. The following remarks can

made for this planar case:

~  The components F_. F, of the inner force can be transformed into the normal
stress and the shear stress via ¢,. It is an advantage of the method that the
force components are introduced in the selected reference frame (not
perpendicular to the cross-section). which simplifies the calculations.

~  The condition (/) = 0 implies that measurements of the tip deflection angle
are not critical with respect to the measurement point.

—

Linearised static deflections under a general tip load

Now we consider an applied tip load F,; = [F;. Fq. F.] in an arbitrary
direction. The deflected centre line is no longer a planar curve and we linearise the
rotation vector ) from the outset: {# = [0, 0, 0,]7 and x= dil/dz. The rotation
matrix T needed for Equations 8 and 11 takes the form

T=E+ A {20)

where E is the unit matrix and

—

0 1, 0,
A= |0, 0 1), (21)
-1, 0, 0

We again use Equation 9 and the boundary condition at the tip to produce

Flzy=F,  Fl=F, FE)=pml--2)+Fg (22)

X - ¥

To express Equation 10. the term dR/ds in the cross-product is written as given by
the compatibility equation:

— 1 [~ =7 [~ T
di.‘{ 0 (0,
d:
dR dy
= - =[E A = -}
ds d:z LE + ] 0 !

Ll_ _]_ 71_
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and we obtain
M, +[ugll - z2) + Fr ], + Fr, =0
M+ [pg(l -2y + Fp ], —Fp =0
=M= Fp0, —Fgth =0

The relation between M, and ¢}, follows from Equation 11:

M, El h 0,
=T El ' | v,
M. GA (),

To a first order, the above simply becomes
M, = EI_U M, =EI U, M. = GA U,

o the differential equations for the 0, read as follows:

ELO) —pg(l 200, = +F . 0,(0)= 0y =0 (23)
EL 0 —ug(l--2)0, = —Fo  0,0)=0,() =0 (24)
GAU; = — F 0, + Fp 00, 0,00) = 0, (1) = 0 (25)

The two bending equations in ), and {/, are decoupled and reduce to the planar
equation (16) if the tip load 1s horizontal {F,. = 0). Equation 25 shows how
the torsion results from the solution of the bending equations. If F ,=0. 1, =0 and
the torsion remains zero, as it should for the planar deflections. Similarly. if
F,,=0.{, =0 and so the torsion again remains zero.

Equations 23 and 24 can be converted into the equations for the displacements
x., ybyusing x'=1(),. )= -- 0, (compatibility equation),

Equations 23-25 may also be used to show that the torsion is zero for a
symmetric cross section (EI = E[ = EI). Writing the horizontal component of F ,
i~ molar form, -

N

Fo=Fcosg Fo= Fsing

and defining
¥, =t cosp + 0,sing

then Equation 23 * cos ¢ plus Equation 24 > sin ¢ produces
EIV) + [pg(l--2)+ F . ]¥, =0 Y0 =% (=90

Thus we find ¥, = 0 as a solution and Equation 25 may be written
GAU, =F¥, =0 0 =0, () =0

i.e. the solution is /, =0. or no torsion.
For an asymmetric cross-section. the torsion following from Equation 25 will be
small. as the right-hand side is a second-order quantity.
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Planar vibrations

Although the only measurements envisaged on the axial antenna of ISPM were ’
static deflections, it is interesting to derive the equations for the free vibrations.
The availability of these equations can inspire different test measurements and also
shows the capabilities of the method used.

To use the general equations for a problem of free vibration. all the vectors are
considered as the sum of an equilibrium (subscript ¢) and a dynamic part (subscript
d). The general equations are then split-up into equilibrium equations (applied
forces present) and homogeneous linear dynamic equations, as. by definition. the
free vibrations are about the equilibrium point. The example will illustrate this
technique and more details can be found in Reference 3.

The equilibrium is trivial with zero deflections and inner moments:

F,=[00pg(l--2)]" R, =[002]" M, =[000]"
K, =[000]7 i, =[000]1"
Considering only planar vibrations, we denote the dynamic variables as:
Fd:[Oj_"_O]T R,=[0y0}" M =[m00]"
K, =[x, 00]7 0O,=[0,00]7 -
Starting from Equation 2,

- _ d? . _ -
(F,+ F)+nu a;(Re + R} = pgl.

| 2

o
A

we obtain equilibrium Equation 9 and the dynamic equation

OF,  d’R,

+ _
as  Mae

-0 (26)

For the planar vibrations. Eguation 26 gives only one nonzero scalar equation:
] ety =0 (27)

where the time derivative is replaced by jou.
The expansion of Equation 2 contains terms originating from the equilibri
and gives the following dynamic equation

M, &R - oR -
S F S F=0 (28)
0z 0z 0z

which gives one scalar equation:
M, +fy +pgl-- 2}y =0 (29)
The elastic equation and kinematic compatibility equation are simply M =

+ EI 0, and ¢/, = --). Substitution in Equations 29 and 27 gives the following
equation in }:

YRR -y e =0 (30)
where
o et oo
T El Y EL
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and the derivatives are with respect to the non-dimensional independent variable
2=zl

The [requency condition follows from the requirement of nontrivial solutions lor
the boundary conditions y(0) = v'{0) = v"(1) = y"({1) = 0.

The solution of the equation describing the planar static deflections will be
described here in some detail, Using this model. a first-order assessment of the two
bending stiffnesses of the axial antenna is possible and predictions for the
measured tip deflections have been calculated.

Rewriting Equation 17 in terms of the following nondimensional independent
variable

ce1 ol (31)
we find
) ——alth = --b (32)

Nt (1) = ((0) = O

where
gt
a=——
El
s
~ El,

Although a known set of independent solutions of Equation 32 are the Airy
functions®. which are related to the Bessel functions of order + 1/3. it is much more
convenient to use directly the two base solutions e[(J). ¢ (.)of the homogeneous
equation which satisfy the boundary conditions ¢,{0) = 1 .¢,(0) = 0.¢,(0) = 0.¢,(0)
= 1. Assuming that the ¢(,) have a series representation ¢, = X ¢, -*. one finds
easily that the ¢, satisfy the recurrence relations

i

€
S - 33
ST ) (k1 3) 33
and start respectively with ¢, = l.¢; = ¢, = Oforejand ¢, = 0.¢;, = 1.¢, =0

for ¢,. They can also be denoted by

. . . 1 —.
e} =fRad) el ==9Rad) (34)
v
where
. x? x® x”
Jixy=1 +__!+4_§'f+47$+'" (35)
’(4 x? X'IO
glx) = x + 24—! + 2.5ﬁ + 258 1o + (36)

We also need a particular solution corresponding to a constant right-hand side. As
a fundamental set of solutions of the homogeneous equation is known, it is always
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differential equations
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possible to construct a particular solution with the general method of variation of
parameters. )
The calculations are much simplified if we exploit the fact that the right-hand
side is simply a constant by assuming a power series solution similar to the ;. One
finds the same recurrence relation (33) for the coefficients and the starting values
arec, =c, = 0.¢; = --b/2.
If we denote the particular solution as P. then

. b .
P} = - Ga®? hi(3, 3a)
where
xZ xS )CS X'“
h(_\')=i+l!§+2!—8—!+3‘.ﬂ~! (37)
Now the general solution to Equation 32 is
0,(0) = Aey(l) + Be(J) + P(O) (38)
0 ()=0,{0)=0
Using the boundary conditions to identify 4 and B,
. Py .
)= - ——=egls P
) =y e+ P (39)

Hence. only one of the base functions is required. The tip-deflection angle ¢,(0) is
given by

P b k3
O T B R “

By integrating ¢,(;). one obtains similar expressions for the linear tip
displacements:

or

1 1

B (. OO PO weve
J“‘“Ba)z'ﬁ{ ) J b < J " 3““‘)d“} )

0 0

which. after some calculations can be computed from

§ < B MR £ (G
e (Sa)l" 4(6‘;)

(42)

where H_. F_ satisly recurrence relations obtained by integrating s and f term by
term, and we have

1 3a (3a)* (3a)?
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1 3
" nzl

““Te ST Gn + 2)(3n + 3)
z 3
Fia) = 1+ 55+ 40, + 47 S
3n--2

e nzl

R T TE )

=1 ¢

{44)

From Equations 40 and 42 one can prepare the two curves. shown in Figures 3
and 4, that show the linear and angular tip deflection per unit gram lateral load as
a function of the bending stiffness. Both curves are calculated for an antenna
length of 8 m and a linear density ;=0.034 kg/m. The dashed lines indicate the

bending stiffnesses obtained from earlier tests with gravity compensation.

It is interesting to compare these results with the solution without gravity.

Under this assumption. ¢ =0 and Equation 32 reduces to

_F,P

(45)

4 256
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Figure 3. Linear tip displacement per unit gram
lateral load (cm;g) as a function of bending
stiffness (Nm-) [ [ =8 m, x=0.03d kg m|
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ANGULAR TIP DEFLECTION (deg/g)

034

04654

0.4227

0.334

0310324

01

i
E
E
I
[
[
[
I
[
!

| 1 ]

: .
15 xn 2 2 30 35 3 4 45 50
BENDING STIFFNESS (Nm?) -

Figure 4, Angular tip deflection per unit gram

lateral load (deg:g) as a function of radial stiffness
(Nm?) [ =8 m. x=0.034 kg m]
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The solution of Equation 45 is

. FuP F.2
0, = 557 (= D= [0, = - 551 (46)

which could aiso be obtained by evaluating Equation 40 for ¢=10.
For the tip deflection v, one obtains in the same way

F 'J"P
3E,

[.". .'] . = (47)
Neglecting gravity, the curves of Figures 3 and 4 are replaced by two hyperbolas,
The same hyperbolas appear as a factor (term b) in Equations 40 and 42 and the
remainder of these equations can be interpreted as a correction factor depending
only on the ratio of the gravity forces 10 the flexibility [u = (3d) gI*/EI ]. -

Figure 3 contains a second curve {assumed modes). proposed in Reference 6.
based on the formula

R
- 3EI, L,
3

(3] {48)

The correction factor in Equation 48, when compared 1o Equation 47, has been
obtained by assuming that the shape of the deflections is still the third-order
polynomial corresponding to the zero-gravity solution and modelling the gravity
as a concentrated load. The figure shows that the results are wrong by a factor of
approximately 2.

Later in Relerence 6 another solution is proposed bused on a discretisation
procedure and using a {inite-element model (an $-element model was used). The
results are identical for bending stiffnesses above 25 Nm?. but deviate increasingly
for lower bending stiffnesses. A priori. onc would indeed expect that the more
flexible the beam, the finer the discretisation that is needed.

The solutions to Equations 23 and 24 and Equation 30 can be obtained by the

ESA Journal 1983. Vol. 7
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same methods as used in this section. For interpretation of the test results,

Equations 40 and 42 are the more important.

During the tests. the ISPM antenna was hung fully deployed (8.0 m) from its
stowage/deployment unit. which it leaves via two guide rollers (modelled as a
clamped root}. Four plumb lines were attached to the deployment unit in such a
way that they defined a set of reference axes for the measurements,

The origin of the axis set was on the antenna centre line at the root. The x-axis
was aligned with the weaker principal bending direction of the cross-section at the
root and the y-axis with the stronger. This axis set was transferred to the tip of the
antenna via the plumb lines. The natural (unstressed) tip offsets were found to be
J.6cm in the x-direction and 1.7cm in the y-direction. The natural twist of the
cross-section was 11.5°. The definition of the reference axes was such that the
parallelism of the x- and y-axis with the principal bending directions at the root
was more precise than the location of the centre line. The measurement of the
natural twist over the antenna’s length is therefore more precise than that of the
natural tip offset.

The antenna was loaded horizontally at the tip with a small weight of ~6 or
~ 12 g via a pulley and a tripod (Fig. 5). It must be noted that. in the deflected state.
s_ond-order effects change the direction of the applied load (horizontally as well
as vertically) due to the finite distance to the tripod. and also the magnitude of the
applied load (friction in the pulley). These effects were not measured in the test. In
the deflected state, the three components of the angular deflection at the tip were
measured directly using a cubic mirror glued to the tip and two theodolites. The
linear displacements, measured on graph paper. were repeated for loads of 6.5 and
12.75 g in steps of 45° in a horizontal plane. More detailed information on the test
set-up is given in Reference 6.

Tables 1 and 2 give the measurements along the principal bending directions at
the tip. To eliminate the uncertainty in the neutral position of the antenna. only

I s |

7%

T
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MOUNTING
UNIT

PLUMB -LINE
2

MIRROR
7

DEFLECTION
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Test description
and results

Figure 5. Test-arrangement schematic
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Conclusion

References

the differences in deflections due to the two loads are converted into bending ~
stiffnesses. This approach is always valid for cases in which a linear relationship
exists between forces and displacements.

The difference in stiffness between the + and - directions provides an
indication of the uncertainty in the result. As this uncertainty results from a large
number of error sources, the average stiffness is taken as the final estimate. The
linear tip displacements give systematically iower estimates than the angular
deflections. which are considered to be more precise. The results of the angular
measurements are in better agreement with the estimates derived from the floating
antenna.

Table 1. Angular measurements

Angular deflection {°) EI _
66g 1275¢ A=625¢g deg/g (Nm?) El
+X 2.59611 5.3986 2.6422 0.42275 24 2225
-X 227416 5.18833 2.9086 0.46538 20.5 ’
+Y 2.19333 4.21666 2.0233 0.32373 364 15.4
=Y 1.75499 3.84333 2.0883 0.33413 344 ’
Table 2. Tip displacements N
Tip displacement {cm) El o
65g 1275¢ A=0625g cm/g {Nm?) EI
+X 224 49 ) 26.6 4.256 18.5 19.25
-X 220 476 25.6 4.096 20 '
+Y 17 37 20 32 3.2 36
-Y 20 39.7 19.7 3152 32 ’

The equations describing the static deflections of a flexible beam under a
distributed load due to gravity and a concentrated tip load have been derived by a
general vectorial method. The linear differential equations with variable coef-
ficients have been solved to obtain predictions for these deflections. The results
show that. in spite of the small mass of the flexible antenna. gravity must be
modelled as a distributed load in order to obtain sensible results.

The results of the analysis have been used to interpret the measurements fr >
the static deflection tests on the ISPM spacecraft’s antenna. The results obtaimed
via the angular deflections at the tip agree best with the results of earlier tests with
gravily compensation.
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