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Mathematical Modelling of a Flexible Beam under
Gravitv

AbstfaCt The diflerential equations describing the static deflections of a Bernouilli beam

under gravity and a concentrated tip load are derived and solved. The solutions

are used to predict tip defl€ctions as a function of bending stillness for a constant

tip load. This relationship is then applied to the results of the static bending tests
performed on the ISPM satellite's axial antenna to determine its bending stillness.

The results show clearly the importance of modell ing gravity as a distributed load.

even for lisht structural elements.

R6SUm6 Cet article Etablit et resout les 6quations diff6rentielles auxquelles ob6it la flexion
statique produite par I'action de la pesanteur sur une poutre conforme d la loi de
Bernouilli avec charge concentr6e aux extr6mit6s.

A partir des solutions trouv6es, on calcule les flexions d'extremite en fonction de
la rigidit6 dL la flexion pour une charge en bout constante. On applique ensuite la
relation aux r6sultats des essais de flexion statique effectu€s sur I'antenne axiale de
la sonde ISPM enfin de d6terminer sa rigiditE i la flexion. Les r6sultats montrent
clairement I'importance d'une mod€lisation de la p€santeur en tant que charge
r6partie. m€me pour les 6l€ments de structure de faible poids.
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IntfOduction The incleasing size and flexibility of appendages on modern spacecraft

introduces a particular problem when these elements are tested under normal

gravity. In spite of their small mass, the dimensions of these appendages are often

such that the distributed load due to gravity cannot be neglected in full-scale tests.

The equations used to interpret the measurements of such a full-scale test must

include this effecl.
A simple. but typical example is the axial antenna to be flown on the Agency's

International Solar-Polar Mission (ISPM) satell i te. This newly developed antenna
(by Sener) is up to 8 m long and has a mass of 272 g. lt is stowed on a drum

during launch in an elastically pre-stressed state. and it is then flat in cross-section.

Following deployment. it assumes a double symmetric shape due to the
prestressing and the two ensuing principal bending directions have dillerent

stiffnesses. lt is a requirement that the minimum bending stillness should exceed

l 6  N m 2 .

A first measurement of bending stiffness was performed with the antenna

floating on water, thus compensating for gravity effects. The bending stillness

could then be obtained directly from the lateral dellections due to a tip load.

However. due to the nature of t l le f loatation devices. it was possible to perform

these tests only for the two principal bending directions. Furthermore. the

floatation devices tended to remove any natural pretwisting of the beam about its

axis.
To verify the earlier results and measure the deflections fol different bendx,o

directions. it was decided to measur€ the tip deflections with the antenna hanging
vertically. clamped at the top (deployment unit) and free at its lowet end. where a

horizontal force was applied and the deformation measured.

The aim of this paper is to derive and solve the equations describing the

behaviour of such a beam. Aisuming small deflections. these equations become

linear. with variable coefficients of the polynomial type. and a complete set of base

solutions can be generated from the corlesponding recurrence relation. The
predictions for the deflections based on this model are in agreement with the

results of the previous tests. Other approaches. in which the distributed load due

to gravity is replaced by an 'equivalent' concentrated load at the tip. produce

results that are in error bv an ordel of masnitude

Bending equations
for slender beams

A set of general vectorial equations describing the bending deflections of

Bernouil l i  beams are first considered and used as the common starting point for

problem analysis. These general equations are derived under all the well-kno' "

assumptions tlrat define tbe slender Bernouil l i  beamr'2. In particular. inhvr

moments and forces are defined whiclr average tlre stlesses over a cross-section.

Tlre rotational inertia of a cross-section is neglected. as well as tlre shear

delormation. and the beam is consideted inextensible. These assumptions are valid

lb| the problem considered hele. The gene[al equations allow the treatment of

static and dynamic three-dimensional dellections which are geometrically non-

linear (they are discussed in more detail in Referencc 3). They are applied to the

following cases:

(i) A straight beam hanging under glarity. clamped at its root and subjected to
a horizontal concentrated tip load along a principal bending direction.

(i i) The same as (i). with an arbitrary direction foI the concentrated load.

(i i i) Vibrations ol (i) in the absence ofthe concentrated load.

General equations
The ll lst ectuation is Newton's second law ol'motion applied to a beam element

ds under the inlluence of the innel lblec and moment - F1s). 11(\) acting on the

cross-section at s. the inner lbrce and momcnl F(.\ +d.). t(r +d,\) acting on the

cross-sec t ion  a t . \+dr -  and the  fesu l t i rn ts  F , , .  i4 , ,o t  the  remain ing  app l ied  lb lces
(concentrated or distributed):
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The cross product in the unknowns R and F makes Equation 2 nonlinear.
Equations I and 2 are also given in Reference 2. Th€y are better known in more
specialised forms (no vector equations) that describe planar deformations.

The next equation is an expression of Hookes' law and relates the inner moment
M to the curvature i via the elastic ploperties ofthe cross-section:

\_7 : rsr'�(( -- ,ro)

where rio is the natural curvature corresponding to a stress-free state. S is the
matrix representation of a second-order symmetric tensor which summarises the
elastic properties of the cross section in lhe so-called 'Principal Flexural-Torsional
axis system ('PFT system)r. where i l takes a diagonal form for a double symmetric
cross-seclion. The PFT system at s carries a unit lector tangenl to the centre l ine
in the increasing sense of s. and two unit vectors perpendicular to the centre line
and a long lhe  pr inc ipa l  bend ing  d i rec t ions :

( -

where E/,. E/" are principal bending stillnesses. and G.4 is the torsional stiffness.
T is a rotation matrix between the PFT system and a chosen reference frame.

|tre matrix expression TSTr represents the elastic tensor in the (arbitrari ly)
chosen reference frame. The physical content of Equation 3 is base-independent.
which is reflected by tlre rectors M. r. . r in and the matrix notation T S T / Io[ the
second-order tensor.

The assumptions of inextensibil i ty of the beam and the neglecting of the shear
deformations eliminate a second equation of the same type between tlre inner
forces and longitudinal delormationsr. In the terminology of Reference 4.
Equations I and 2 are balance equations and Equation 3 is a constitutire equation.

The tltree equations ptesented so far are equivalent to 9 scalar equations and
contain tlre l2 unknowns from the components of F. R. M. i i  (derivatrves oo not
introduce new unknowns) and the three unknowns defining T when T is an s-
dependent matrix. The tlrree unknowns of T are equivalent to the three
components ofa rotation vector r:

t t  =  1 t i , , :  [ / , r  1 ,2  r ] r ]  l

where {/ is the magnitude of t lre rotation and l ra unit vectol on the rotation axis.
The genera l  non l inear  re la t ion  be tween t l re  cur la lu re  r i  and  th is  ro ta t ion  \ec to l
I S , :

ESA Journal 1983, Vol. 7

(r) F  ( s .  d s )

s+ds )

In slender-beam theory. F(s,r), M(s.r) summarise the stresses in the cross-sections.
They ale called the inner force and couple and are part of the response of the
system to F.. ['l .. tfey appear. accordingly. in tbe left-hand side of Equation l.
The inertia term contains the l inear density p. the position vectol R(s.r) from an
inertial origin to the material point at s of the cenlre line. and d/dt. the rate of
change as seen from inertial space.

Taking moments about the point s+ds. while neglecting the rotary inertia ofthe
beam element ds. we obtain the second equation

(2)
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Note that Equation 6 reduces to

when 0 has a constant direction [(d/ds) 1i,; : o1 or when 0 is small and second-

order terms are neglected. Only this form will be used in this paper.

We now have 12 equations for 15 unknowns and the last vector equation

(essentially contained in Ref. I in component form) is

(7)
A

os

(8)

which gives the expression fof the tangent to the centre line in the chosen reference

frame. dR/ds (containing the unknowns of R) as the transformation via T

(unknowns (1,)of i : [001] 
? (PFT system).

Equations 1.2.3.7 ar'd 8 constitute the complete set of general equations. For

the static deflections of a naturally straight. f lexible beam. hanging undel gravitv

and subjected to a concentrated load at the tip. Equations l-3 become:

r c 1 .
AF (e)

(10)

i T : T S T I l t

where g is the gravitational acceleration and i- the

gravitalional acceleration.

It should be noted that the tip force F, is used as a boundary condition in the

ecluations of motion.
The same dextral reference frame will be used lor all the cases mentioned at the

beginning of this section. The root of the beam is the origin and the beam is

clamped at this point (Fig.2). The --axis is vertical and oriented downwards. The.\-

and r-axes are horizontal and contain the principal bending directions of ":

cross-section al lhe root.

Planar static dellections
We consider fir 'st the case when the applied load is horizontal and parallel to the

r'-axis. The dellections wil l be in the :.r 'plane but. at this level. they are not

restl icted to small deflections. We denote the components of the vectols in tl le

0rr':1r ame as follows:

F(t : tF. F,. F-l I t1(i) = [t1, ,v1, ,v1.] I i : [rr- ri,. ri-] '

! , ,  =  [ 0 0 1 r g ] ' �  a , ( . s )  :  [ 0 , 0 0 ]  F ,  =  [ 0 F r 0 ] 1

The matrix T is. in this case. a single axis t 'otation about the fixed \-direction:

" : : ; : ]

EM 'R' - _ . _ _ ' . . I  f  : 0

cos  l / r

s ln  ( / l

unit

( l l )

vector along the

s = 0

Figure 2. Axis syslem fol
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( 1 2 )

R (s)

beam dell€ctions
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Equat ion  9 leads  to :

- r . - o  F ;  - o  F . - t s  
[ ,  

,  
' ' r . ' ]

which ale tr ivial. The constants of integlation lbllow i om the boundary condition
a t  t l re  t ip .  We obta in .  a f te r  rn tegra t ion .

F . ( s )  : 0  F " ( s )  : F ,  F - l s ) : 1 t o l l  t  ( 1 3 )

In Equation l0 we use the expression for dRrds that takes the compatibil i ty
Equation 8 into account:

*l [,]

l o . l  t  l t l  I  I
l a .  l  l '  0  0 l l ' l  l o  I

d R  l a ,  l  I  l l l  I  I
a , : l o ,  l : r l : 1 0  c o s r r ,  s i n 0 , l  l 0 l : l s i n t t , l

| t l  ll " - l  l n
L "l L' 

sin.r'� ",' 'I 
[ 
'] 

L*"li
) iA-*nt"nf: to sr 'rr{),  cosl), ]7

The components of Ecluation 10 are calculated as

l 1 ' ,  + s i n ( ) ,  l r r r ( 1  s )  + F T c o s t / r : 0  M l . = 0  M ' , : 0  ( t 4 )

and give a nontrivial equation only fbt the M. component. as expected. As i
contains also only one nonzero component (from Equation7). n,:l) ' ,. we need
Equation I I only fo[ the relation between M. and (]r:

[ r^ l  [ r  o o I  [u ' .  ] l l  o
l l t t t l l
l  0  |  :  l 0  c o s l J l  s i n  r / r  |  |  E I ,  l l 0  t o s l / r
l t t t t l
Ln , l  L t  s i n l / l  co \ / r r _ l  L  " t ] L l  s i n r ) r

V/. f lnd. as expected.

M , :  + E I  , ( ) ' t  ( 1 5 )

Combining Equations I 5 and 1,1. we have tlre dif lerential ecluation ibr t ltc elastica:

. ,  l t ( J  , ,  r  r, , t  
E t  , 1 ,  

\ )  s r n  / J r  
E l '  

c o s  l l r  :  0  ( 1 6 )

r / r ( 0 )  : 0 1  ( 4 : 0

Equation 16 dellnes a nonlinear. two-point. boundary-raluc problem. When
gra!ity is neglccted (1(7:0) Equation l6 r.educes to well-known dil lerential
equation lbr the elastica ol' a l lexible beam and is solved in tcrms of ell iptic
I  unc t ionsr  .

Thc dellections .r '(r). :(s) lbllow llom a flrthcr integration of thc solution ol-
Equat ion  l6 :

i iy(r)  :  j  s in r / , ( . )d,  : (s)  :  
J 

cos tr ,  ( . )d-

uro roulno, re83. vol. j 1 9 9



If we now assume 1)r to be small. Equation 16 becomes a l inear diffelential

equation with variable coefficients of t l ie polynomial type and a right-hand side

,ri - #s,tt ,t ,,, : * fi ( 1 7 )

The solution of t lre homogeneous part of this equation can be expressed in terms

of the  Besse l  func t ions  J ,  . ,and J  '  , .  o t  A i r l  func t ions5.

If we linearise also the expression for the cu.rvatule i i: (d'�1)/d:' �. we obtain

the following third-ofder differential equation for the deflection:

f  i  l? rr ,r1'  : . '  (rB)
d - - r  

'  - ' d :  
E l  .

The delivative of Equation l8 gives the fourth-ordef dif lerential equation tl lat

would hale been obtained witlr more traditional metltods:

{J * 4, ,, ,,{J !_o=9.! : o (re)
d, .o  E ]  

'  - 'd : '  
E I  dz

Belore discussing the solution of Equations 17 and 18. the differential equations

cor responding to some other cases wil l be der-ived. The following remarks can

made lb l  th is  p lanar  case:
The components F,. F- of the inner force can be ttansformed into the normal

stress and the shear stress via (l| It is an advantage of the method tlrat the

lorce components ate introduced in the selected reference ftame (not

perpendicular to the cross.section). which simplfies the calculations.

The condition l i i(/) : 0 implies tl lat measurements of the tip deflection angle

ale not crit ical with respect to tl le measurement polnt.

Linearised static deflections under a general tip load

Now we cons ider  an  app l ied  t ip  load F , :  lF r "  Fr , .F r ]  in  an  a lb i t la ry

direction. The del' lected centre l ine is no longer a planar curve and we linearise the

rotation vector 0 from the outset: (/ = [0, 0, l l .1]rand ir: d,/dz. The rotation

matfix T needed fol Eouations 8 and l1 takes the form

T : E + A

whele E is the unit matrix and

(20)

( 2 1 )

We again use Equation 9 and the boundat y condition at the tip to produce

F.( : )  :  F, ,  F, ( ; )  :  F, ,  F - \z l  :  ys\ l  z)  + F r . (221

To express Equation 10. the term dRlds in the cross-product is written as given by

the compatibil i ty ecluation:

( J ,

l ) ,

I

(/.,

\ ' 2

d, r

d '

d.t

d :

0 :l

d R
ds

200

: I E  +  A ]
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and we obtain

M', + fpg(l zl + F r) l)r + Fr, : 0

, - M ' � ,  + L t q l l  -  z \  +  F , . ) r / 2  -  F ' '  =  0

- M ' � - - F t , a t - F r . l . / , : 0

The relation between Mi and l)ifollows from Equation I l:

E'� E'�, ",I"
To a first order. the above simply becomes

M , :  E I , 0 ' t  M , :  E I  , - 0 ' z  M - :  G A 0 ' t

\-^l the differential equations for the l), read as follows:

E I , q ' i  -  p g ( l  z )  0 ,  :  * F , , .  ( l r ( 0 )  :  { l l ( 0 : 0

E I , . t ) ' i  -  p s ( l  - z ) 0 2 :  -  F r ,  0 r ( 0 )  =  { / : ( / )  : 0

GA j ' � ;  :  -  iF7 . ( / '  +  F7 \ { ) r l r/tr(0) : 0r (0 = 0

t;l
(23)

(24)

(25)

The two bending equations in l), and l), are decoupled and reduce to tlte planar
equation (16) if the tip load is horizontal (F.. - 0). Equation 25 shows how
tlre torsion results from the solution of the bending equations. If F r\:0. l/r = 0 and
the tofsion remains zero. as it sltould for t lre planal deflections. Similarly. if
F r,:0. l/ r = 0 and so the torsion agatn remains zero.

Equations 23 and 24 can be converted into tlte equations lor the displacements
x .  J ,  by  us ing  r ' :  ( /2 .  , ! ' :  ,1 ) ,  (compat ib i l i t y  equat ion) .

Equations 23 25 may also be used to sltow that the torsion is zero fot a
symmetric closs section (Ei. : E/,.: E/). Writing the horizontal component of F .
i rolar lbrm.

F r . :  F c o s E  F r , :  F s i n r p

and delining

\Pr  =  { / r  cos  E.+  l l ,  s in  g

then Ecluation 23 : cos lp plus Equation 24 x sin g produces

E I Y ' i  + l 1 e ( l  - : )  + F , l Y , : 0  v , ( 0 )  : V l  ( 0 = 0

Thus we lrnd Y r = 0 as a solution and Equation 25 may be written

G.4 l)'�; : F\v, = 0 r)r(0) = 0; (0 : 0

i .e. the solution is l). :0. or no tol sion.
For an asymmetr ic cross-section. the torsion following l iom Etluation 25 wil l be

small. as the riglrt-hand side is a second-order quantity.
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Planar vibrations

Although the only measurements envisaged on the axial antenna of ISPM were

static deflections. it is interesting to derive the equations lbr the lree vibtations.

The availabil ity of these equations can inspire dif lelent test measurements and also

shows the capabil it ies ofthe method used.

To use the general equations for a problem of free vibration. all the vectors are

considered as the sum of an equil ibr ium (subsclipt e) and a dynamic part (subscript

d). The general equations are then split-up into equil ibrium equations (applied

forces present) and homogeneous linear dynamic equations. as. by definit ion. the

free vibrations are about the equil ibrium point. The example wil l i l lustrate this

technique and more details can be found in Reference 3.

The eouil ibrium is trivial with zero dellections and innel moments:

Considering only planar vibrations. we denote the dynamic vafiables as:

F/ : [o/, o] '� Rr : [o _r,o]

i i ,  :  [ i i ,00 ] r  0 /  =  [ ( / r  00 ] r

Starting from Equation 2.

/ ' ,  =  [ l ' l _oo ] r

" t t  t E  r - , , "  t D  , 4 r ' -  i , g l ,
.rJ 

\ '  1 '  '  , r ,  r '  
df 2 '- ' /

we obtain equi l ibr ium Equation 9 and the dynamic equation

aF  "  d 'R ,
^  r r r . ,  - u  ( 2 6 )
a/s or-

For the planar ribrations. Equation 26 gives only one nonzero scalar equation:

f ,  y t ' t l  Y :g  (21 \

where the time derivative is replaced byjt 'r.

The expansion of Equation 2 contains terms originating from the equil ibti

and  gr res  the  lo l low ing  d l  namic  equat ion

F" :  [ 0  0  r re  ( /  z ) ]?

; ' " :  l ooo ] r

i \ ' t ,  aR = tR,, J ^ F " ^ r n
lla L: a)Z

which gives one scalar equation:

M |  +  f r  +  p s \  - z l l  : o

R . . :  [ 0 0 2 ] '  M .  =  [ 0 0 0 ] '

a,)" = [ooo]'

(28)

(2e)

(30)

The elastic equation and kinematic compatibil i ty equation.are simply M, :

+ Ei, l// l  and {), = 1'. Substitution in Equations 29 and 27 gives tbe following

equatron In ];

1 'u + ;.;f [(1 - i).f']' - ;. r = o

where

F I

202

uull
' ' ,  

E I ,
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and the derivati les are with respect to tl lc non-dimensional independent variable

The liequency condition lbllows tl om the requirement of nontrivial solutions for

the  boundary  cond i t ions  , r ' (0 )  :  r '10)  : , r " ' (1 )  :  r " ' ( I )  :0 .

The solution of the equation desclibing the planar static dellections wil l be SOlutiOn ofthe
desclibed hele in some detail. Using this model. a first-order assessment of the two diffefential eqqatigns
bending sti l lnesses of the axial antenna is possible and predictions fbr the
measured tip deflections hale been calculated.

Rewriting Equation l7 in terms of the following nondimensional independent
rariable

( l  l )

we lind

0 ' ;  u : 0 1  :  b

\</,(1) : 1)10) : o

where

lgl '
E I ,

(32)

L l  r

Although a known set of independent solutions of Equation 32 ale the Airy
functions5. which are related to the Besselfunctions ofolder -| 113. it is much more
convenient to use directly the two base solutions eo(;). i,r(;)of the homogeneous
equation which satisfy the boundary conditions eo(0) : l.ci,(O) :0.e,(0) : 0. e,l(0)
: l. Assuming tlrat the c-(,)have a series representation r,, : Io r1 ,r. one finds
easily that the cr satisfy the recurrence relatlons

\v

, '  ' -  d  
1L - : i i t  *  l1  { '11)

a n d  s t a r t  r e s p e c t i v e l y  w i t h  c o  :  l . ( ' r  :  r ' : : O f o | e o a n d . o : 0 . ( r  :  1 . c : : 0
fol t,,. They can also be denoted by

I
eJJ : / ( i , ' a i )  " , ( ; )  : .  - s ( i ; ; )

i 4

where

r l  v o
/ ( . r )  .  I  i , . o i , * 4 . 7 0 , t . . . .

e(r) :  r  + zi t  z.s i+ z.s.r$] + . . . .

(34)

I  1 5 1

(36)

We also need a particular solution corresponding to a constant right-hand side. As
a lundamental set ofsolutions ofthe lromogeneous ecluation is known. it is always
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possible to construct a particular solution with the general method of variation of

parameters.
The calculations are muclt simplified if we exploit the fact that the rigbChand

side is simply a constant by assuming a power series solution similar to the e,. One

finds the same recurrence lelation (33) for the coefllcients and the starting values

a l e ( o  :  c r  : 0 . c 2 :  " b i 2 .

If we denote the particular solution as P. tlten

P(, )  = . - : r - /1  ( i  3 . r  . )
|pdr "

where

l t l \ ) - 2 :  I  t t 5 t ! -  t , g :  ' . ' , l l l

Now the general solut ion to Equation 32 is

l . t , (J)  :  ' {en( . )  + 8. , , (J)  + P( . )

1/ , ( r )  :  r i i (o )  :0

Using the boundaly conditions to identi ly,4 and B.

P  I
/ / r ( .  )  :  r ( o ( . )  +  P ( . )

( o l r  /

P( l )  b  i r ( {  3 , i )
r , , l u ,  _' cot I ) (r,.,r" 

,tli 
,/)

By integrating {)r(:). one obtains similar

displacements:

(37)

(18)

Hence. only one of the base functions is required. The tip-deflection angle l/,(0) is
given by

(3e)

(40)

expressions for tlre linear tip

(43)

ESA Journal  1983.  Vol .7

'l

J , , , : / l  ( 1 , ( . ) d .
J

I

h  /  f  l ? ( i  . t u )  |  , . .
) , , ,  i r . , r . z  r  1  , ' , r ,  l , n l ' J c =

t  ' u r ' ,  J

which. after some calculations can be computed fi 'om
.,
\-

where H-. F- satisfy rcculrence relations obtained by integratingl' and.l term by

term. and we lrave

I

r - )
I rr(i.,:c ;)a: I
) )

( 4 t )

\4?l

204

t  r . ,  r  1 , , r 2  ( . 1 , r ) .
H  t t t  , ,  ,  u l  ,  2 r ' ' ; ;  -  r !  1 2 ,



' l
3n( : u(,, ' @i iD [,, + :i1:,iT 1

t u 2  |

From Equations 40 and 42 one can prepare the two curves. shown in Figures 3
and 4. t l 'rat show the l inear and angular t ip deflection per unit gram lateral load as
a l lnction of t l ie bending stiffness. Both curves are calculated for an antenna
length of 8 m and a l inear density 1r :0.034 kg1m. The dashed lines indicate the
bending sti l lnesses obtained from earlier tests with gravity compensation.

It is interesting to compare these results with the solution without gravity.

Under this assumption. c:0 and Equation 32 reduces to

r - { 4 1  - |  '  
,  ,  

'  +  .  ,  '  4 .  |  ; . ^  ,  -  - _
L + :  /  I  t t ,  I

3 n 2( ' o :  I  ( , :  u c'  |  (3 , r  -  l )  3 ,  (3 , r  + l )

u i  =L ;  { i l (o )  :  ( i , (1 ) :  o

n >  | (44)

t 45 l

E

2

:

=

l

l

i
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Figure 4. Angulsr tip defleclion per unil gram

latersl load (degrg)as a function ofradial stiffness
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The solution of Equation 45 is

r  I '  f , l ,
n t t  '  t 2  l r  , l i / r t l l l

l ' : '  l F l ' _  ) F I

which could also be obtained by evaluating Equation 40lbr a:0.

For the tip dellcction -r 7 one obtains in tlte same way

r /.r
L _ t  r l " , r :  f r ; / ,

BENOING

Neglecting gra\' i ty. t lre curles of Figures 3 and 4 are replaced by two hyper bolas.
The same hyperbolas appear as a lactor (term b) in Ecluations 40 and 42 and the

remainder of these equations can be intelpreted as a colrection factor dependi"q

only on tlre ratio of the gravity forccs to tlre l lexibil i ty lu : \ i l) glz iEl ,1.

Figure 3 contains a second curve (assumed modes). proposcd in Rel'erence 6.

based on the lbrmula

(46)

(47)

(4R)

The correction l 'actor in Equation 48. when compalcd to Equation ,17. has been
obtained by assuming that the shape ol'the dellcctions is sti l l  the third-order
polynomial colrcsponding to tlre zero-gravity solution and modcll ing the gravity

as a conccntrated load. The ligure shows that t l 're results are wrong by a factot of'

approximately 2.

Latel in Refcrcncc 6 anothcr solution is proposed based on a discretisation
ploccdure and using a l inite-elcment model (an 8-element model was used). The

results arc identical for bending stiffnesses above l5 Nm:. but deviate increasingly
lor lower bending stiffnesses. A priori. onc would indecd expect that the more

flcxible the beam. the finer the discretisation that is needed.

The solutions to Equations 23 and 24 and Equation 30 can be obtained by the
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- same methods as used in tl l is section. For interpretation of the test lesults,
'  Equat ions  40  and 42  are  the  more  impor tan t .

During the tests. the ISPM antenna was hung ll l ly deployed (8.0m) from its
stowage/deployment unit. whiclr it leaves via two guide rollers (modelled as a
clamped root). Foul plumb lines were attaclted to the deployment unit in such a
way tlrat they defined a set of reference axes for the measurements.

Tlre origin of the axis set was on the antenna centre l ine at t lte root. The r-axis
was aligned with the weaker principal bending direction of the cross-section at the
root and the )'axis with the stronger.'This axis set was tlanslel.red to tlre tip of t lre
antenna via the plumb lines. The natural (unstressed) tip oflsets were found to be
l.6cm in the r-direction and l.7cm in the 1'd11s611or. The natural twist of the
cross-section was ll.5'. The definit ion of t lre reference axes was such tltat the
parallelism of the x- and J'axis witlr t lre principal bending directions at the root
was more prccise than the location ol'the centre l ine. The measurement ol the
natulal twist over the antenna's lensth is t lterefole more nrecise than that of the
natural t ip offset.

The antenna was loaded horizontally at the tip with a small weight of - 6 or
- l2 g ria a pulley and a tripod (Fig.5). It must be noted that. in the deflected state.
r.-^xd-oldel eflects change the direction ofthe applied load (horizontally as well
as relt ically) due to the finite distance to the tripod. and also the magnitude of the
applied load (fr iction in the pulley). These effects were not measured in the test. ln
the deflected state. the three components of the angulal deflection at t lte tip were
measured directly using a cubic mir ror glued to the tip and two theodolites. The
linear displacements. measured on graph paper. were repeated for loads of b.5 and
12.75 g in steps of45" in a horizontal plane. More detailed information on the test
set-up is given in Rel'erence 6.

Tables I and 2 give the measurements along the principal bending directions at
the tip. To eliminate the uncertainty in the neutlal position of the antenna. only

r'tRRoR

Test description
and results
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Figure5. Test'arrangemeot schematic
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the differences in deflections due to the two loads are converted into bendinsl

st lhesses. This approach is always valid for cases in which a l inear lelationshif,

exists between forces and displacements.
The dillerence in stillness between the + and directions provides an

indication of the uncertainty in the result. As this uncertainty results from a large

number of error sources. the average stiffness is taken as the l inal estimate. The
linear tip displacements give systematically lower estimates than the angular

deflections. which are considered to be more precise. The results of the angular

measurements are in better agreement with the estimates derived f|om the floating

antenna.

Table l. Angulsr measurements

Angular deflection (")
6.6 C 11.'75 g A : 6 . 2 5 9 decig

EI
(Nm' ) EI

+ X
- X

2.6422
2.9086

2.0233
2.0883

2 .5961 I
2.2'1416

2 .19333
r.75499

5.3986
5 . r8833

4.21666
3.84133

0.42).15 21
0.46533 20.5

0.32313 36.4
0.33413 34.4

Trble 2. Tip displscements

Tip displaccment (cm)
6.5 C 12.75 g a : 6 . 2 5 e

EI
cmi g (Nm') EI

X
49
4't.6

3 l
39.1

26.6
25.6

20
19 .7

4.256
4.$6

3.2
1 .152

18.5
20

31.2
32

19.25

31 .6

22.4
22.0

t 7
20

COnCIUSiOn The equations describing the static deflections of a flexible beam under a

distributed load due to gravity and a concentrated tip load have been derived by a

general vectorial method. The linear dil lerential equations with variable coef-

ficients have been solved to obtain predictions for these deflections. The results

show that. in spite of the small mass of the l lexible antenna. grality must be

modelled as a distributed load in order to obtain sensible results.

The results of the analysis have been used to intefpret the measurements fr ' '

the static deflection tests on the ISPM spacecraft's antenna. The results obtairrcd

via the angular dellections at t lre tip agree best with the results of eall ier tesls with

gra t  r ty  compensat ion .
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