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Jet Damping and Nutation Growth during the Burn
of a Solid Rocket Motor such as PAM-D

AbStfaCt This paper considers the influence of the variation of the mass properties on the
transverse dynamics during the burn of a solid rocket motor. Time-dependent Euler
equations which express the conservation of the angular momentum for the gas flow
and a form of the gas-dynamic torques as given by Flandro are presented. They are
integrated for a chosen time history of the mass properties. This model predicts a
constant spin rate, a smaller jet damping and an instantaneous nutation frequency
above the value based on the instantaneous mass properties. These features are in
agreement with flight experience with the PAM-D motor. A nutation growth can be
obtained by adjusting the gas-dynamic torques. It remains to be seen whether the
predicted nutation growth fits the observed nutation growth.
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l. Omega transverse for a
time varying system

1.1 General equations of motion
During the burn of a solid rocket motor, the system mass properties vary

considerably. To study the impact of this efffect on the transverse dynamics, we
consider the following version of the Euler equations at the c.o.m. of the system
(Appendix B):

A(t) t\ - [A(t) - C(t)le2q + inl\D2 at - C(r)[Kror + Krot2l = 0

A(t) @2 + lA(t) - C(t)l@p3 * nl(t\2 ,,t2 - C(r)[-K2@r + K1o2] : 0

c ( t )  q : 0 .  0 )

The absence of ,4, i termt ur well as the presence ofl(,, 1(, will be discussed first.
The equations (l) are modification of the dynamical equations obtained on p. 79 of
Reference 2. It has been shown that they express the conservation of the total angular
momentum for the combustion products b€tween their creation at the burning surface
and their exit through the nozzle. As a consequence ,i, or C, terms are nor presenr
in the jet damping term or in the roll equation. From the roll equation follows then
irnmediately:

c r3( t ) :  o3(0)  :  0

With ,i, C terms present, the model predicts that there will always be a spin-up
during the burn of a solid rocket motor. For the PAM-D upper stage (Star 48 motor)
this spin-up would be substantial. Flight experiencer shows that the spin rate hardly
changes during the burn of these motors. A correct roll equation can only be obtained
by using the conservation of the spin component of the angular momentum for the
gases (steady flow); this also changes the jet damping terms. It can be argued that the
.4 terms should b€ present in the first two equations of (l) that give the transverse

dynamics. This point is still under investigation.
Now the equations for the transverse dynamics can be combin€d as follows with the

complex number a* = urljaz,

@* + | ml(t)z - C(t\Kt + il@(t) - C(t)) 0 + c(r)&)l I 
q:0 

Q)
Au l

List of symbols and abbreviations

m
a , t

m^(t)
a^(t)
c^(t)

zn
ms
as

m(t)
A(t)
c(t)
a'(t\

zn
zs
zn

Kt)
c.o,Il!.

mass flow of the rnotor (>0 and assumed constant)
rate of change of the transverse, spin moments of inertia of the motor
( ) 0 and assumed constant)
mass of the motor
lateral moment of inertia of the motor
spin inertia of the motor
distance from reference plane to c.o.m, of motor
mass of the satellite
lateral moment of inertia of the satelliie (constant)
spin inertia of the satellite (constano
system mass
lateral moment of inenia of the system (at its c.o.m.)
spin inertia of the system (at its c.o.m.)
transverse inertia of the system at the c.o.m. of th€ motor
distance from the separation plane to the exit of the nozzle
distance from the s€paration plane to the c.o.m. of the satellite
distance from the separation plane to the c.o.m. of the motor
distance from the separation plane to the c.o.m. of the system
distance from the c.o.m. of the system to the nozzle exit.
centre of mass
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grouping terms according to the physical effects:

d,* + {d(r) - Krtr(r) + jlno)a + &xr)l I o* : 0

inl1\2
where d(r) : -: jet damping term

A\t)

CK\
trrl(t) = Kr : gas dynamics terms

A(t)

n(t): | - @ nutution.
A(4

(3)

The gas-dynamic terms lKl, & are presented by G. Flandro'. They originate from a
more detailed flow model for the gases in the motor. Their exact definition is
complicated, as they relate to the modal properties of the unsteady vortex flow. A
simple physical interpretation is not to hand at the moment. They provide a possible
explanation for the nutation growth at the end ofthe PAM-D burns. In this article they
are used as positive constants. This permits the inter?retation that they represent an
intrinsic property of the motor. In reality, they may depend on system quantities such
as l(t), A. The unit of K,, K2 is time-r, their inverse is a time.

The coefficient of <.,r* is written as a complex number. The real part will determine
the amplitude of o*(t), the imaginary pan the frequency. To solve (2) some
reasonable assumptions for the evolution of the mass properties during the burn are
needed. The model used in this paper is idealised to make the investigation possible.
It consists of a system made up ofa symmetric satellite with constant mass pioperties
(m,, a,, c,) and a symmetric motor with an invariable c.o.m. and linearly varying
mass properties about its c.o.m.. The corresponding time functions for the mass
propertles are:

m(t) : mn(t) * m, : - ,id (linear) (ryr : m,6 + m")

C(t) : c^(t) + cs = cno * c" - cr (linear)

theoretical time to make the mass (inertia) of part f, zero based on the
mass (inertia) flow of the motor e .g.i r,n, rno, r" times corresponding
to the total system mass, the motor mass and the satellite mass
respectively. Examples for the inertias are 7" Oased on d),2", (based
on a).
= (a" + a^(Q)l a (not a physical inertia)
= 1a^ - z)zm!.i (transfer term)
intermediate variabl€s

-i:-: > I
z n -  z n

ano  +  p rs

T n l

r" (p-Dz

components of the angular velocity
transversg angular velocity as a complex number. co1*a4=ode
modulus of <.r*
phase angle of c,r+
spin rate (radls)

Ti

Tft

d' qs qd

p

p

ari

6
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m^(t\
A ( t \ = a ^ ( t \ + a s + L m s

m(tl

l(t) : z" - 7(r) with z(t) : (zrn, + z^m-(t))ln(t)

( 2 , - z ' ) n ' + ( z n - z ) n n Q )

(z^ - z"1z (quadratic/linear)

d(n) - Kr\(z) + jdln(u) + jK2).t(u) du

KzXx + 0o
0t

or l(t) = (linear/linear)
m(tl

Such a time dependency of the mass properties is an acceptable first approximation
for the PAM-D upper stage. Other models will be discussed elsewhereo. The general

solution to the first-order linear differential equation (3) is:

u* = l,/o* e-x(tl (4)

where X(t) :

Denoting

xd|t = t
.t
0

0r

o

d(u) da : Xr(,) = [ f,tat du : x,(t) :
.l
0

I n(z) da
.l
0

we have X(r) = XAt) - &Xr(4 + jq}X^(t) + jK2X\(t) (5)

(6)and

Equation (6) contains an amplitude and a phase angle part. The amplitude cr depends
on d(r) and Ktl, only:

o(r ) :  l@* le  
x lo+Krxx( t )  (7)

When d,tr > 0, then X/,Xr increase and they have an opposite influence on o.

The phase tunction d is d(0 : O X^(t) + K2X\(t) + 60 (8)

From (8) the instantaneous (nutation) frequency ratio to the spin (denoted g(r)) is given
as:

, " ' r  :  , . ,_*  F-Xdtt t  ^Kh ^- jxnnrg --JK2x\

It is this function rather than n(t) that must be considered for the nutation-to-spin ratio
in a time-varying system. The function n(t) has this meaning only whm it redaces to
a constant, i.e. for a constant mass system.

The definition of g(t) holds for any n@,\(r). The value of 8(t) is not given by the
mass properties at t only, b]ut depends on the history (from 0 to r) of the system via
the integrals in Xr,X^. This is also true when K2 =0 g(t) is in general different from
n(/). In fact, in this case, g(t) is the average value of r(t) up to t and the fluctuations
of n(t\ are smoothed.

1.2 Phase function d
The first term of the phase function g is Xn and to evaluate it with the aid of the

results from Appendix A \(r), we rewrite it as the ratio of two quadratic functions:

(e)
Y--! 

I
t

- l
. l

', c,(") .
|  _ o l l

J A,(u)
0

inbN(t)

AinD(t)
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X^(t) :
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where i,i'rN(r) : n(t) Cs@ : O^ - t)(rc - t)

Am D@ : [a^(t)+ a,] m(t) + m-(t) m, (z^-2,)2

: dm[tz - (an + ra)t + r^ai + r,frrt)

and D(t) : (p - t)(q - t)

The two roots of D(r) are aways real, positive and equal to:

p : ao, q, - rn otd = q' (l1'e) -r^ a (10)

e : r^ a, - ra, crd = r^ (1*a) -ro' a (l l)

r "r,-
where q :

\r"' - r^)'

The smaller root is q < 7,n.
The results of Appendix A can be used with:

N(z) N/a)
c p :  [ f l :  c o = : [ 7 )

p - q q - p

(12)

(16)

and X1(r) can be written as:

x^o : : l, *,,  ̂(, -) .,,^ ( ' - ;))
The related functions Xn and gn are:

x,(t): t - .ul,* ",n (r - i) 
* ,,,, (t - )]

s.$): | - tr- t^l ' ,, ( '  -;) . ,,^ ( ' -:))

The equations (10, ll) forp, 4 give the following expressions for co, co:

a , 2  q .
cp = tra - r^) --, (r" - 6) > O (15)

d ! + d d  a s + d a

ot12
c q  =  - l ' t a . -  r n l  

e l l  
-  L  { r r - r . r a O

d s  +  c r d  a s + a d

The first term of g,(t) has the s:rme appearance as n (r) but is based on the change in
the inertias instead of on the inertias themselyes. The second term in the phase
function is due to K2. The corresponding K2\ follows imrnediately from the
calculations aboye:

i f  /  r \  /  r \ l
K 2 X s  =  K 2  - .  

l t  +  c p l n l l  -  - l  +  c o  l n  ( l  -  - l l
a L  \  p /  \  q / l

The global frequency-ratio function including both the effects of nutation and K2 is:

su t :  |  -  f , -  + )  j  f  r  +  ?  n ( t  - ! \  +  " r "  / r  -  1 ) l  1 � i ,
\  O / a l  r  \  p /  I  \  i l )
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When K2 is small compared with 0, only the effects of the changing inertias on 8@
qre obsemsble and make the observed nutation frequency different ftom nt). The fact

that the observed frequency g(r) is different from a calculated n(t) is in itself no

evidence for the presence of ,(2. Equation (17) must be used to identify K2.

1.3 Amplitude function (,

The remaining terms d(t) and ftl(t) will influence the amplitude of (.)x. Starting

with the jet damping, we reorganise d(r) as follows to facilitate the calculation of X/:

inl2 ft)
d( r )=-- - - - - - - - - : - :p

A, l t )

A : \ n l p r s : r n + ( p - l ) r ,

From Appendix A we obtain immediately J(t) : e-xd''

,..1,., + .lpi'�

a ,  l a 7

e r =  - 7  1 0

gEa + ..��f,po,)2

@ -12

(q - t)(r ̂ - t)(p - t)

> 0

> 0

J(t) :

where

( '  
-  

) "  
( '  

-  
; ) ' ( '

- ; ) ' ( 1 8 )

1 d - 2
e n =  A r l t  =  

_  . l
\q -  r ^ , \q -  p ,

r R - -  t 2
e t : A , l t : . - : - . = . P

\ 'rn-q)\ ' rn-pl

t B - d 2
e o =  A o l t  =  

_ p
\P -7n t \ p -q )

Substituting the results for p, 4 from (10, 11) and grouping terms we have:

(1e)

(20)

(2r)
a , i e 7

Equation (18) can be written as:

/ ,  t \ ' n  / ,  t \ ' ,
t ' - - ,  t r  

- - t
\ q / \ p / Q 2 )

h t \  :  
-

/  t \
1 1 -  -  )
\ r-/

The evolution of the amplitude is no longer described by an exponential decrease, but

is as given by the power functions in (22). The denominator tends to increase the

amplitude. Normally the effect of the two terms in the numerator dominates (4<t-).
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Finally, the gas dynamics term due to Kl
previous calculations we have immediately:

also affects the amolitude. From the

KrXr :

and eKtXx

Kr contains an increasing exponential term when I(l is a positive constant.

The corresponding time constant rl is: ro : !. 61t Q4)
c

The exponential term comes from the fact that the numerator and denominator of X(t)
are of the same degree in t. For the jet damping function d(t), the degree of the
numerator is smaller than the degree of the denominator and no such term is found
in (18) .

Combining (18) and (23) we have the total amplitude function:

a .
. .  i  /  I \  ( r cd  / ,  t \  x r . q
K t  . I + l n l l -  l u  

' + 1 ,  ( l - - 1 ,
c \ p/ \ q/

(23)

(2s)

where the exponents of the power functions are given by:

. cq

7k

. c D

rk

where ep, eo are given by Equations 19 and 2l and co, cn by Equations 15 and

16. From these expressions it is clear that en is always positive and that there

exists a Ki such that for k1> Ki eo is negative.

Hence for Kl < Ki the two power functions in (25) decrease, while the

exponential and the inverse increase linearly. In the other case, only the power

function in €p decreases.
For small / Oeginning of the burn) the amplitude increases or decreases

according to s being positive or negative where r:

(26)

(27)

I

Tk

I - ' 3  - ' !
q p

(28)

The results of the previous sections will now be applied to the Star-48 motor. Only
some simple examples are given. More detailed investigation and comparisons with
numerical integration are given in Reference 8. The following approximate data for
the STAR48 motor were reconstituted from Reference l. These values should not be
taken to be exact; we hope that the order of magnitude is representative (in MKS-
units): burn time 86 (s); n = 23.55 (kg/s): ri = 4.23 (kgm2/s); t = 3.94
(kgmZ/s); 2,,6 = 93.64 (s); r" . = 10f�j5 (s); r"*:96.55 (s).
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Notice that a and a are alrnost equal. For a slender motor, not only would c/a be
much smaller, but so too would c/ a.

z^ = - .78 (m\: z^ = -2.1 (m)i p : 9.9O

For the satellite data the following three cases from Reference 1 are considered. The
first two (SBS, RCA) are typical spacecraft using PAM-D that showed a fast nutation
growth at the end of the burn. No such growth was present on the third one (SGS lst
stage). lt is planned to use the PAM-D stage for the ESA spacecraft Ulysses. Its mass
properties are quite different from the data used here. Hence extrapolating the
observed nutation growth is a delicate matter. Moreover, at one point, the possibility
of using PAM-D as an upper stage was envisaged by the Cluster project. The
reconstitution of the mass properties from Reference I implied some guesswork:

The corresponding time constants (in seconds) are:

(I) SBS-type

rz, : 1251 (kg)
q, : 442 (kgm2)
c, : 457 (kgm2)
z, : .912 (m)

(ID RCA

tn, = 1081 (kc)
4, : 310 (kgm2)
c, : 328 (kgrn2)

z, = .912 (m)

45.U
83.21
73.24

'131.28

t35.52
179.86
9r0.97

2.28
195.50

plep

135.935
t17.74
535.902

([I) SGS lst stage

m, : 3266 (kC)
a, : 2453 (k}m2)
c, : 612 (kgm2)
z, : 1.44 (m)

136.68
15s.26
579.55

3802.94

228.96
251.91

4489.05
2.68

485.83

7t

For the total system we have:

r44.63
2r2.59

1057.15
2.28

211.74

The corresponding derived quantities

52.3s
1r5.94
r04..43
846.16

p
R

(D
(r)
(IID

for the phase function are:

co plco q -cq -qlcs

0.053 1.051 0.051 1103.36 849.81 t.298 98.42 5.25 18.75
0.055 1.053 0.053 95r.61 735.05 r.294 96.88 3.94. 24.56
0.029 1.028 0.w8 4607.750 4240.870 1.08 1t0.25 3.74 29.49

The table shows that cr is small. Under this condition a, and c7 can be approximated
respectively by I *cr and o. The power function in p is very well approximated by
the exponental function e-rl'p wherc ro:plco. The corresponding frequency-ratio
function g,l(t) as given by Equation 14 is plotted in Figures l-3 and compared with
n(t). At the end of the burn, g,(t) is clearly above n(l) in all cases.

For the amplitude function the following quantities are also needed

p

l103.36
951.61

4fi7.750

€p

8 . 1 1 7
8.082
8.598

q

98.42
96.88

110.25

€q

2.720
2.755
2.239

qlec

36.184
35.169
49.247
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The amplitude function for the jet damping alone is given in Figures 4-6. It takes
about 65 s to reduce the initial level to 5% for case I, II. This reduction in efficiency
of the jet damping is in agreement with the flight data.

In all three cases the terms due to rn and p compensate approximately and the jet
damping is well approximated by the q term.

The total amplitude functions are given in Figures 5 -8. The value for ro = a167,
must range from 3 to 4 s to have an steep increase of the amplitude at the end of the
burn. This implies that the amplitude grows from the beginning of the burn which is
not in agreement with the flight data. Moreover, the effect of K, is very different in
the three cases. The result that case III has a much smaller amplihcation factor is fine
(mostly due to the increase of z,), but the difference in amplihcation factors between
cases I and II is much too large. This disproves the assumption that rKr is a constant.
Its own time dependency must be found and taken into account. However the structure
of Equations (l) remains intact and the results for the phase function and the jet
damping are not affected.

The influence of the variation of the mass properties on the transverse dynamics
during the burn of a solid rocket motor was considered. The time-depend€nt Euler
equations used expressed the conservation of the angular momentum for the gas flow
and a form of the gas dynamics torques as given in Reference 7. This model predicts
aconstant spin rate, a smaller jet damping and an instantaneous nutation frequency
above the value based on the instantaneous mass properties. These features are in
agreement with flight experience with the PAM-D motor. The nutation growth
computed while assuming r(t constant does not fit the nutation growth observed

,.4
e 4 2

\

-.t
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l-,et D(t) and N(t) be two quadratic functions and p,q be the two real roots of D(t):

then D(r) : tz + b t + c = (p - t) (S - t)

- D + \ f a  b  - . r A
a n d  p :  - - - - ^  q : -  .  a n d A > g

2 2

ll ,vttl .The integral In = I .: d, is computed as:
I D
0

'" Nttt - ottt
b : t +  I  - d r- l D f t l

0

', -a^ -A^
- I ------Ja L -----J A,- l

I  P - t  q - t

N(r) N(a)
wi th Ao= '  Aq:  - - : ' -

p - q  q - p

Appendix A: Integrals

- t
t23 - I

I
o

Next we consider the intesral

fz@
(rt - t)(rz - txrj - r)

dt

,
I  - -

q
. t
t - -

p
1, ,  = t  +  A^ ln + A- ln
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Appendix B. Equations of we stan from the rotation equation as given in (3.4-20) of Reference 2. The total rate
mgtign of change of the angular momentum dMldr is equated to the external torques t:

where .;| is a quadratic function of t.
As the degree of the numerator is the degree of the denominator minus one, the

function under the integral sign can be expanded as:

f^r ' I
where A, = . 

---! 
-, j .kl i

\ r i - i ) l r i - r * )

when the roots zi are positive and increasing with i then A13>O and A2<O

/  t \  A ,
a n d  1 , , : - l n I I l l - - l '- \ r i /

. / d 0 \ "
I  r x {  .  x  r l  d M  +  |  r x  [ O x ( O x r ) ] d M  +
J  \ d ,  /  J
M M

' / 6r\ 62r2  
J J  

r x ( o " i , ) *  +  
J  

r x : u , , d M : r ' ^
M M

(B. l )

where r : the position vector from the instantaneous c.o.m. to an
arbitrary point of the system

O : the rotational velocity vector from a frame attached to the
c.o.m. of the system;

d ( )---:-: : the total rate of change of the elemental mass dM
dt

6 ( )= : + 0 x ( )
ot

6 ( )--:- : the total rate of change with respect to a frame moving with the
0' ".o.-. of the system. when the displacement of the c.o.m.

with respect to the rigid pan is small, it can be taken as the
rate of change with respect to the rigid part of the system. Or
6( ) l6 t :  V ,p  -  u ,^ . ,p  =V,p

In both cases the total (or substantial) derivative is the sum of
the local and the convective derivative:

do 60 ao- o r
dt At

M : the system under consideration, consisting of a rigid part
(motor plus satellite) and the gases in the combustion chamber.
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In the absence of external torques (B.l) is rewritten as:

M i n  +  M c *  M * 1  : O

where

M , n :  t
.l

(8.2)

/ d o , \ "
r x  [ - x r l d M +  I  r x

\d r  /  )
M

{0  x  (Ox r ) }dM (B.3)

(B.4)

(B.s)

M6, M,"1 correspond to (4.2-3c,d) with opposite signs as they are part of the total
angular momentum and remain on the left-hand side of the equation.

The main problem is to work out the integrals in (B.3-5) under reasonable
assumptions for the physical flow behind them. The first term of M;, is easily
worked out by introducing the inertia tensor:

J " (8.6)

To work out tie second term, we start from the following vector identity:

A  x  (BxC)  +  B  x  (CxA)  +  Cx  (Ax8 ) :0  (B .7 )

or

A x @xq + (AxA) x C :  B x (AxC)

Using this identity with C=(.BxA) we have:

A x [Bx(AxA)]  + 0 :  I  x [Ax(axd)]

(8.8)

(B.e)

x (1O) (B.10)

M . = 2  l  r r , / n r , t \ *- J \ 6 r , /

.  6 2 r  . 6 /  6 r r
M n r  =  |  r x  , d M :  |  ^ ' ( r x - l d M

J  d r -  J  d r \  o t /
M M

Min can be wrinen as:

60
u , ^ = I  

u  
+ 0 x ( 1 0 )

I r x  l 0 x ( Q x r ) l d M  =  [  0  x { r x ( Q x r ) l d I 4  =  0
.l
M

/dQ \ d0
l -  x  r l d l ' l :  I -
\d, / dt

as it is well known that for the O-yector d0/dt : 60/6t
Equation (B.1 l) is the same as the Euler equation for a rigid, constant mass system

although the inertia I is time varying and part of the system has a relative motion.
(8.1l) is identical to (4.2-33) of Reference 2 as dm/dr-6f0/6r=0 x 0O) and has

been obtained here without using (B. 14) (see below).
The Coriolis term Mc will be evaluated yia transformations as in [2]. From the

chain rule for derivatiyes we have:

( B . l  l )

9[rx lnxr; ]  :  
l i ' ,n*,  .  "  (T '  )  

* , ,  ( - '  : ; )
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Adding and subtracting the last term, and using (B.8), we find that (8.12)
becomes:

6 /6r \ /60 \ /6r\-  l r v ( O x r ) l  : 0  r  ( " .  x  r )  +  r  t  ( ;  t  r )  +  2 r  x  ( -  )  
( 8 . 1 3 )

dr \dr / \dr / \ot)

After integration over M and using the following rule for changing the order of
integration and derivation:

" 6 P  6  "
|  - d M =  |  P d M +
.l 61 6r .l
M M

we find that (B.13) becomes:

6 . 6 0- r O +  |  l r x  t O  x  r t l  l p v . n \  d A ,  =  M c  + I - + 0 x
0t .\ 0I

^"  
|  

6 j  
x  rdM (8.15)

)u ut

which gives the following expression for Mc

M,:6:0 + o x 
I  

( ,  "  
: ; ) . " .  I "  

t rx  @xrt  (ev.n)

JP (pV.n) dA" (for any vector | (B.14)

(B.17)

(B.r8)

(B.19)

(B.16)

Usually the remaining volume integral is neglected and the surface integral is worked
out on the basis of an axial flow model at the nozzle exit.

The second expression of the relative moment M.4 (B.5) is rewrinen using (8.14):

J
6 ,

M,et, : - I
0t .l

6r
r x - d M +

6t
6r

rx -  (p.V.n) dA"

dM
t-3tm = _ = \ (pv-n\ dA,

dt .l
Ae

So far only (B.l l), the result for M", is free of integrals; (B.16-17) for M6 and M,,1
each still contain one surface and one volume integral.

The sudace intesrals are worked out as follows:

; Jr (pV.n) dA"

Then (B.18) defines the mass flow tu and (B.19) the centre of the mass flow r""
through the nozzle exit. When the motor has rotational symmetry, r"" is on the
nomrnal sprn axrs.

When decomposing r oyer A, asi r=r""+r" (8.20)

(8.21)J
286

we have from (B.19): + (pv.n) u. = 0
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